首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Drop size distribution and mean drop size are used for calculation of interfacial area available for mass transfer. In this study, the drop size distribution and Sauter mean drop diameter (d32) have been investigated using three different liquid systems in the absence of mass transfer in a pilot plant pulsed packed column. The drop size was measured at four different points along the active column height. Three operating variables have been studied including the pulse intensity (af) and flow rates of both liquid phases. The effect of liquid properties and height of the active column were also investigated. A combination of the pulse intensity and interfacial tension had the largest effect on the drop size distribution while none of the flow rates were of significance. The height of the column played an important role at the bottom of the active column, but the associated effect was reduced with increase of the height. Finally, a normal probability function of number density was proposed for prediction of the drop size distribution with an Average Absolute Relative Error (AARE) of 8.8% for their optimized constant. Furthermore, two correlations were presented involving height or flow rates of the two phases along with operating variables and physical properties of the liquids. These correlations had AARE values of about 8.5 and 7.8%, respectively.  相似文献   

2.
Agitated-pulsed column (APC) is a newly designed extraction column with excellent mass transfer performance. In this work, Sauter mean drop diameter d32 and drop size distribution was investigated under different operation conditions in a 25 mm diameter APC. The results show that with an increase in pulsation intensity and agitation speed the drop size distribution is narrowed and d32 is decreased significantly. With increasing dispersed-phase velocity, d32 increased and drop size distribution become narrow, while there was no noticeable change with continuous velocity. The cumulative size distribution was found to be predicted well using the Inverse Gaussian function. A new correlation was proposed to predict the experimental d32 data of the APC column used in this study. Furthermore, population balance model was applied to predict the drop size distribution with refitted parameters in the breakage, coalescence kernels functions.  相似文献   

3.
Sauter mean drop sizes (d32) generated from a hole distributor in liquid extraction RDC columns were studied under various conditions. Experiments were designed to generate data required to determine the main variables that control the drop sizes in RDCs. Two precise correlations were proposed for predicting d32 in a RDC extraction column. The first was based on operating variables, hole‐distributor diameter, disc speed, column geometry, and system physical properties. The second one considered the same variables, except the column geometry. This model can be used for design purposes. The two correlations are the first of their type to consider the distributor hole inlet diameter in a RDC column. This diameter has been neglected by previous investigators. The maximum standard deviation for all data is 0.75 %, with a maximum absolute error of 6.8 %.  相似文献   

4.
A single expression for the prediction of drop size in the mixer-settler, transition and emulsion regimes of operation in pulsed perforated-plate liquid/liquid extraction columns is presented. Analysis of 326 published drop size measurements both with and without mass transfer for 16 liquid/liquid systems from 12 different data sources show that the Sauter mean drop diameter, d 32, in the dispersion is given in terms of column geometry, operating conditions and physical properties of the phases by:

in which ρ* and σ * are the density and surface tension of water at 20°C and α and 1 are the fractional plate free area and compartment height respectively. This equation predicts the drop diameter with an average deviation of 11·3% which is much better than the average errors obtained using other available correlations.  相似文献   

5.
Vortex diodes are used as leaky non-return valves in applications where it is desirable to avoid valves with moving parts. Despite their use in practice for several decades, no clear guidelines for design and optimization of vortex diodes are available. Detailed experimental study on flow and pressure drop characteristics of vortex diodes was therefore carried out to evolve such guidelines. The study covered a wide range of vortex diodes. The variation of diodicity (ratio of pressure drop for reverse and forward flow for the same flow rate) with respect to diode geometry, diode size (dC), aspect ratio (dC/h), nozzle configuration and Reynolds number (Re) was studied. The experimental results were critically analyzed to develop a design methodology. The methodology is shown to be useful for obtaining the diode dimensions that would yield the desired diodicity for the required operating flow rate.  相似文献   

6.
7.
Developments in the area of packed columns, particularly structured packed columns, are ongoing, specifically in the area of liquid–liquid extractions in different industries. In the present study, mass transfer coefficients have been obtained experimentally in a structured packed extraction column to develop a new correlation for prediction of continuous phase Sherwood number. The experiments were carried out for toluene/acetic acid/water and n-butyl acetate/acetic acid/water systems with counter current flow in different heights of column. A new dimensionless parameter, d32/h, is introduced in proposed equation. This number considers the effect of column height (h) and mean drop diameter (d32) jointly. The main advantage of this approach is that the principal effect of column height is considered in correlation without which the experimental data could not be fitted with a acceptable accuracy.  相似文献   

8.
A packed bed reactor with orifice plates (PBR@OP) was designed by adding orifice plates periodically in packed beds. Hydrodynamics and droplet size distribution in PBR@OP were experimentally investigated using fatty acid methyl esters (FAME)/water as the model liquid–liquid system. In PBR@OP, the flow pattern was close to plug flow. Droplets with Sauter mean diameter (d32) of 150–550 μm were generated. The pressure drop of orifice, flow velocity and plate spacing were key parameters to control the droplet size. The reactor performance was evaluated by analyzing a FAME epoxidation process. At the same d32 and residence time, the length and total pressure drop of PBR@OP were about 1/3 and 1/4 of those of PBR without orifice plates, respectively. Furthermore, a semi-empirical correlation describing the d32 change in PBR@OP was developed, revealing a relative mean deviation of 8.64%. PBR@OP presents a cost-effective option for the intensification of liquid–liquid medium rate reactions.  相似文献   

9.
Dispersed phase holdup was measured in a pulsed plate column for the kerosene-water system under binary conditions and under solute transfer from dispersed to continuous and continuous to dispersed phases. The experimental data were satisfactorily modelled through a recirculation regime model. The drop size distribution, measured by a photographic technique, exhibited a multinodal character at low agitation rates and high dispersed phase flow rate. Sauter mean drop diameter was found to depend on the agitation rate, the dispersed phase flow rate, the mass transfer direction and the plate free area. Correlations for d32 and the interfacial area were presented using Kolmogoroff's isotropic turbulence model.  相似文献   

10.
A CFD (computational fluid dynamics) model of a solvent extraction pulsed column has been developed and run with a single water phase. The results are compared with experimental measurements taken on a pilot scale column using PIV (particle image velocimetry).The pulsed column investigated had disk-doughnut internals and was operated under pulsing intensities ranging from 10 to 32.5 mm/s. PIV measurements of velocity were used to validate the CFD model and to characterise the pulsing flow of a single phase through the column. The CFD modelling was performed for the same geometry and operating conditions using a 2D computational grid and a low Reynolds Number k-ε turbulence model. An improved velocity prediction was achieved by adding a gap between the doughnut internal and the pulsed column wall. The combined measurements and predictions give insight into the effect of the geometry internals on the flow hydrodynamics in the pulsed column.  相似文献   

11.
A study on the pressure drop in pulsed extraction columns with internals of immobile discs and rings, usually called Discs and Doughnuts Columns (DDC) is carried out. The local pressure at a desired level of the column is obtained by resolving of turbulent flow model based on Reynolds equations coupled with k? model of turbulence. Consequently, the pressure drop for a column stage or for a unit of column length is determined. The results are used for development of correlations for determination of pressure drop as a function of plate free area, interplate distance and pulsation parameters – amplitude and frequency. Good correspondence to experimental data is observed. The developed quantitative relations are useful for non-experimental numerical optimization of stage geometry in view of lesser energy consumption.  相似文献   

12.
This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column,which is highly required for design and optimization of the periodic flow processes for industrial applications.In this regard,a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity,the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well.Moreover,the concept ofcharacteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.  相似文献   

13.
We investigated the hydrodynamic behavior and mass transfer characteristics of a pilot-scale conventional packed bed extraction column of mercaptan removal from liquid propane. The extraction column was filled with pall rings structured packing where mercaptan was extracted from the continuous phase to the dispersed phase, accompanied by a chemical reaction in propane-mercaptan-caustic system. The pulsing was introduced into the column to enhance the mass transfer rate. Hydrodynamic parameters such as hold up, flooding velocity and mean drop size were studied together with the effect of chemical reaction on increasing mass transfer performance. Finally, the mass transfer and axial mixing coefficients were obtained from the optimization of data by ADM. It was found that at the pulsation intensity from 0.003 to 0.007 m/s, the maximum mass transfer and minimum axial mixing occurred and it can be concluded that pulsation improves the efficiency of mass transfer just at low intensities.  相似文献   

14.
The volumetric overall mass transfer coefficients have been measured in a pulsed packed extraction column using diffusion model for the toluene/acetone/water system. The experiments were carried out for both mass transfer directions. The effects of operational variables such as pulsation intensity and dispersed and continuous phases flow rates on volumetric overall mass transfer coefficients have been investigated. The experimental findings indicate that pulsation intensity and mass transfer direction have great influence on volumetric overall mass transfer coefficient. Significant, but weaker, are the effects of continuous and dispersed phase flow rates. The experimental results obtained in the present work are compared with some other types of extraction columns. Finally, two empirical correlations for prediction of the continuous phase overall mass transfer coefficient is derived in terms of Sherwood and Reynolds numbers. Good agreement between prediction and experiments was found for all operating conditions that were investigated.  相似文献   

15.
Abstract

The mass transfer characteristics of a pulsed disc and doughnut column with a 0.04 m internal diameter and 4.24 m active column length are investigated in order to evaluate its contacting efficiency for caprolactam extraction with toluene. Pilot plant experiments for both the forward and back‐extraction process were performed in order to determine the concentration profile along the column length in both the extract and raffinate phase as a function of the operating conditions. The experimental conditions covered the industrial operating range. Furthermore the dispersed phase hold‐up, average droplet diameter and operating regime were determined and compared with the results obtained for the equilibrium situation, as discussed in Part II.

In the forward extraction process a significant influence of operating conditions was observed, where an increase in the flux decreased the separation efficiency, but an increase in pulsation intensity, temperature, or the addition of ammonium sulphate increased the separation efficiency. In the back‐extraction all concentration profiles were comparable and all caprolactam was extracted after a column length of L/m=2. Compared to the equilibrium situation the drop diameter and pulsation intensity required for the transition of the mixer‐settler to the dispersion operating regime were found to increase under mass transfer conditions, while the hold‐up decreased. HETS values were determined for both the forward and back‐extraction. For the latter HETS=0.28 to 0.41, whereas in the forward extraction HETS=0.32 to 0.67.

The concentration profiles were described with the backflow model, using a constant backflow parameter for the continuous phase and a constant overall mass transfer coefficient. The interfacial area was correlated using drop diameter and hold‐up expressions derived for the equilibrium situation, taking into account the relative effect of mass transfer. Using these expressions the measured data could be correlated and described well.  相似文献   

16.
In this research, the impact of pulsation intensity and phase flow rates on the volumetric overall mass transfer coefficients based on the continuous phase (Koca) and the axial dispersion coefficients of phases in a horizontal pulsed sieve-plate column has been investigated using axial dispersion model. The toluene-acetone-water and butyl acetate-acetone-water systems with acetone transfer in both directions were used. In this study, the flow regime transition from pseudo-dispersion regime to emulsion regime has been characterized. Two new correlations have been proposed for prediction of Koca and Ec.  相似文献   

17.
The pressure differential of single and two-phase flow in mini-channel serpentine geometries was investigated to determine the effects of flow patterns and radius of curvature of the serpentine on pressure drop. The friction factor for single phase flow through a straight channel was comparable to existing literature, while that in the serpentine geometry fell between conventional theory for straight channels and fully developed flow in helical coils. Extension of the single phase results to two-phase flow using a separated flow model led to the development of empirical correlations for two-phase pressure drop in the straight and serpentine configurations. Five operating regions were identified within the serpentine, each with distinct pressure drop characteristics dependent on the flow pattern and extent of bubble deformation. Two of the operating regions corresponded to bubbly and slug/unstable-annular flow, while the boundaries between the three remaining regions occurred at WeLGLC = 2.7 and 15.5; corresponding to the onset of mild cap deformation and continuous bubble breakup, respectively.  相似文献   

18.
The presented contribution reports on comprehensive hydrodynamic investigations in two pulsed sieve-plate extraction columns (PSE) on a pilot scale. The experiments were conducted with three different sieve plate geometries employing test systems recommended by EFCE, under varying pulsation conditions and throughputs. The results of the investigation add to the existing knowledge of relationships between hydrodynamic parameters, drop size, hold-up, flooding throughput and mixing and operating parameters. They also provide useful information for scale up, selection of sieve-plate geometry, most favorable operating range, and constructive design of equipment. On the basis of measurements, analytical methods are recommended for prediction of PSE hydrodynamics.  相似文献   

19.
S. Yuan  Y. Shi  H. Yin  Z. Chen  J. Zhou 《化学工程与技术》2012,35(10):1810-1816
Experiments were designed to ascertain the main factors for the Sauter mean drop size (d32) of the dispersed phase in a three‐stage modified Scheibel extraction column with no mass transfer. A precise correlation applied to the liquid‐liquid systems with low interfacial surface tension was proposed for calculating d32. The maximum relative error for all data was 16.0 % and the mean relative error ±4.6 %.  相似文献   

20.
In this study, the volumetric overall mass transfer and phases axial mixing coefficients have been investigated in a pilot plant of an L‐shaped pulsed packed extraction column by using two liquid systems of toluene/acetone/water and n‐butyl/acetone/water. The mass transfer performance has been evaluated using two methods of axial dispersion and a plug flow model. The effect of the operational variables and physical properties, including the dispersed and continuous phases flow rates, pulsation intensity, and interfacial tension, on mass transfer and phases axial mixing coefficients have been considered. It has been found that the pulsation intensity and the continuous phase flow rate seriously affect the mass transfer coefficient, however, the dispersed phase flow rate has a weaker effect. Also, the axial mixing of a phase is strongly affected by the pulsation intensity and the flow rate of the phase itself and it is not affected by the second phase flow rate. Finally, new correlations are proposed to accurately predict the mass transfer and axial mixing coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号