共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat transfer coefficients measured in a 0.15 m ID bubble column are compared with similar studies in larger diameter columns to identify influence of column diameter. Gas phase used is oil free compressed air and its flow rate is varied from 0.03 to 0.35 m/s. Tap water is the liquid phase and the solid particles used are 49 μm glass beads and their concentration is varied up to 20 vol%. The observed increase in heat transfer coefficients can be related to increase in liquid circulation velocity with column diameter which in turn is related to increase in large bubbles rise velocity. A simplified scale-up procedure is presented based on available data and suitably modified literature correlations for heat transfer coefficient. 相似文献
2.
A scale up strategy for bubble column slurry reactors 总被引:2,自引:0,他引:2
The hydrodynamics of bubble column slurry reactors are strongly influenced by the scale of operation. We suggest a strategy for scaling up reactors from laboratory scale to commercial size that relies on a fundamental understanding of bubble hydrodynamics, which is incorporated into a computational fluid dynamics (CFD) model. 相似文献
3.
Su Yifeng Wang Yifei Zeng Qinghua Li Jian-hui Yu Guangsuo Gong xin Yu Zunhong 《Chemical Engineering and Processing: Process Intensification》2008,47(12):2296-2302
An experiment aimed to link the extent of axial mixing in a special configuration bubble column reactor with different liquid properties (water, 10% K2CO3 solution, 20% K2CO3 solution, paraffine). The experimental results proved that, increase of liquid viscosity will delay the mean residence time and weaken gas axial backmixing. Increased surface tension leads to lower flow regime transition point and higher overall gas holdup. Surface tension is the dominant factor to influence of gas axial backmixing degree. A simple RTD model for homogeneous–heterogeneous regime is developed in the column of 0.1 m diameter and the corresponding correlation of gas axial dispersion coefficients is . The model is verified by experiments with air/water/paraffine system. Good agreement is found. As a byproduct, a non-empirical formula for gas holdup results, g/(1−g)4 = 0.579 (ugμ/σ)0.918 (μ4g/ρLσ3)−0.252. But both correlations cannot be available for K2CO3 solution with addition of small quantities of surface tension in pure liquid. 相似文献
4.
A.K. Jhawar 《Chemical engineering science》2007,62(24):7274-7281
A fast response probe is used to measure local heat transfer in a bubble column. It captured the variations in local heat transfer coefficients due to changes in local hydrodynamic conditions in radial and axial directions. These measurements have been used to identify flow regime transitions, variations in flow patterns and local hydrodynamic structure as obtained with different gas distributors and varying gas velocity. Standard deviations of pressure measurements obtained with a fast response probe have been compared with heat transfer coefficient fluctuations for the first time and the similarities and differences have been pointed out. Variations in average heat transfer coefficients and standard deviations in radial and axial directions point to different hydrodynamic conditions and are compared with literature studies. Relationships between local heat transfer measurements and hydrodynamic conditions are shown. 相似文献
5.
F. Camacho Rubio M.C. Cerón García E. Molina Grima 《Chemical engineering science》2004,59(20):4369-4376
Use of bubble columns as photobioreactors requires a quantitative knowledge of radial mixing in these columns. A complete model of liquid-phase dispersion was used to simultaneously characterize axial and radial mixing in a relatively large (0.06 m3, 2.3 m tall, 0.193 m in diameter) bubble column photobioreactor. Axial and radial dispersion coefficients and mixing times were determined in tap water and sea water for superficial aeration velocities of up to . The measured axial dispersion coefficients (Dz) were generally consistent with the predictions of the well established correlations, thus validating the complete dispersion model used in the analysis. The Dz values ranged from ∼150 to and were highly reproducible. There was evidence that the existing literature data on Dz in bubble columns are slightly underestimated, as consistent underestimation was found to be a characteristic of the widely used dispersion model that disregards radial dispersion. The value of the radial dispersion coefficient was typically about 1% of the Dz value under any given condition. Except at incipient aeration, the radial dispersion coefficient was not as sensitive to the magnitude of the aeration rate as was the axial dispersion coefficient. The mixing time data were generally consistent with the existing correlations. 相似文献
6.
D. Colombet D. Legendre A. Cockx P. Guiraud F. Risso C. Daniel S. Galinat 《Chemical engineering science》2011,(14):3432
We consider the liquid-side mass transfer coefficient kL in a dense bubble swarm for a wide range of gas volume fraction (0.45%≤αG≤16.5%). The study is performed for an air–water system in a square column. Bubble size, shape and velocity have been measured for different gas flow rates by means of a high speed camera. Gas volume fraction and bubble velocity have also been measured by a dual-tip optical probe. Both of these measurements show that the bubble vertical velocity decreases when increasing αG in agreement with previous investigations. The mass transfer is measured from the time evolution of the dissolved oxygen concentration, which is obtained by the gassing-out method. The mass transfer coefficient is found to be very close to that of a single bubble provided the bubble Reynolds number is based on the average equivalent diameter 〈deq〉 and the vertical slip velocity 〈Vz〉. 相似文献
7.
In this study, surface-to-bed heat transfer experiments were performed to gain insight on heat transfer and hydrodynamics in a three-phase inverse fluidized bed. Air, tap water or 0.5 wt.% aqueous ethanol, and polypropylene were, respectively, the gas, liquid and solid phases. The solid loading was varied from 0 to 30 vol.%, and the gas and liquid superficial velocities from 2 to 50 mm/s and 0 to 21 mm/s, respectively. Visual observations were associated with measured phase holdups and instantaneous heat transfer coefficients. Larger gas velocities lead to an increase in bubble size due to the transition to the coalesced bubble flow regime. The greater turbulence induced by the larger bubbles increases the average heat transfer coefficient. On the other hand, adding ethanol reduces the heat transfer coefficient. Solid concentrations up to ∼13 vol.% increase the average heat transfer coefficient whereas higher solid concentrations tend to lower it. The distribution of instantaneous heat transfer coefficient peak height is wider at higher gas and liquid velocities while the addition of a surfactant narrows it. Gas holdups and average heat transfer coefficients are both compared with existing correlations, which are then adjusted for a better fit. 相似文献
8.
B. H. Chen 《加拿大化工杂志》1989,67(4):678-681
The effective thermal conductivity ke was measured for a continuous bubble column operating within the bubbly flow regime. ke was found to be independent of liquid flow rate but strongly dependent on gas flow rate and physical properties of the liquid phase over the ranges 0.1>uG>4 cm/s, 0>uL>3.4 cm/s, 0.00096> μ >0.0028 kg/m μ s and 0.047 >σ>0.072 N/m. 相似文献
9.
Air-holdup and heat transfer coefficient data are reported for the air-water and air-water-sand system as a function of air velocity in the temperature range 297-343 K as measured in a 0.305 m diameter bubble column operating in semi-batch mode and equipped with either a five- or seven-tube bundle. A 65 μm average size sand powder is used at concentrations of 5 and 10 mass percent in the slurry. Available correlations of gas holdup and heat transfer coefficients are examined on the basis of these data. These are found inappropriate and inadequate for representing these experimental data. Gas holdup data are well represented by an approach based on Nicklin's (1962) work, and heat transfer data are adequately represented by a simple semi-empirical expression. Accurate experimental data on additional systems are needed to develop a reliable heat transfer theory particularly for process representation at temperatures higher than ambient. 相似文献
10.
Experiments were carried out to investigate the effect a surface active agent on homogeneous-heterogeneous flow regime transition in a laboratory scale bubble column. Air and water with various amount of CaCl2 were the phases. The (voidage e) - (gas flow rate q) dependence was measured. The critical point where the homogeneous regime loses stability and the transition begins was evaluated by several methods. These methods are based on the slip speed concept and the drift flux model. The critical values of voidage and gas flow rate were taken as the quantitative measures of the homogeneous regime stability. They were plotted against the surfactant concentration. It was found that the surfactant has a dual effect on both the voidage and the regime transition: low concentration stabilizes and larger concentration destabilizes the homogeneous bubble bed. At present, we do not have an explanation to these observations. Possible physical mechanisms of the surfactant effect are expected to be revealed by further experiments, which are currently under way. 相似文献
11.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations. 相似文献
12.
N. Habtu J. Font A. Fortuny C. Bengoa A. Fabregat P. Haure A. Ayude F. Stüber 《Chemical engineering science》2011,(14):3358
Heat transfer was investigated in an insulated packed bed column with co-current downflow of gas and liquid under constant and periodically modulated gas–liquid feed temperature. Bed temperatures at three axial positions were assessed at steady state for different insulating systems, different gas and liquid flow rates and system pressure. The experimental profiles recorded were modeled with a dynamic pseudo-homogeneous one parameter model to analyze the effect of operating conditions and to deduce coefficients of overall (U) and bed to wall (hW) heat transfer. It appears that the heat transfer is strongly affected by the system pressure, whereas the liquid flow rate has a smaller influence. The experimental data of hW were correlated with the operating conditions leading to a small average error of 7% in the correlation. Condensation of water vapor occurring in the column seems to contribute to the heat transfer inside the packed bed. Several dynamic experiments modulating the feed temperature were also conducted and described with the help of the dynamic model. Predictions with the fitted values of U were in good agreement with experiments and give confidence to apply this model in the investigation of the catalytic wet air oxidation of phenol over carbon conducted in a trickle bed reactor under temperature feed modulation. 相似文献
13.
In this work, the effects of surface-active contaminants on mass transfer coefficients kLa and kL were studied in two different bubble contactors. The oxygen transfer coefficient, kL, was obtained from the volumetric oxygen transfer coefficient, kLa, since the specific interfacial area, a, could be determined from the fractional gas holdup, ε, and the average bubble diameter, d32. Water at different heights and antifoam solutions of 0.5- were used as working media, under varying gas sparging conditions, in small-scale bubble column and rectangular airlift contactors of 6.7 and capacity, respectively. Both the antifoam concentration and the bubble residence time were shown to control kLa and kL values over a span of almost 400%. A theoretical interpretation is proposed based on modelling the kinetics of single bubble contamination, followed by sudden surface transition from mobile to rigid condition, in accordance with the stagnant cap model. Model results match experimental kL data within ±30%. 相似文献
14.
Mariano Martín Francisco J. Montes Miguel A. Galn 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2009,155(1-2):272-284
The complex composition of the liquid media in bubble column reactors makes their understanding and theoretical modelling challenging. In this work we have studied the effect of surface tension and contaminants, salts, on the mass transfer rates from a theoretical point of view, looking for a deeper understanding on the effect of surface active species which usually reduce surface tension and modify bubble surface behaviour. The specific contact area is obtained using a population balance where the effect of the presence of contaminants is addressed by the proper theoretical closures for bubble coalescence efficiency, for partially and fully immobile surfaces, and bubble break-up. Meanwhile, the contribution of contaminants to the liquid-film resistance is implemented as function of the coverage of the surface of the bubbles. It was found that the degree of bubble surface coverage not only affects bubble coalescence but also their break-up. The ion strength defines bubbles stability and the critical Weber number can be predicted as function of ion strength. Furthermore, the mass transfer rates are function of the surface coverage by the electrolytes. The model was able to predict kLa taking into account the fact that the concentration profiles surrounding individual bubbles are not completely developed due to the presence of other bubbles, in agreement with previous results from the literature. 相似文献
15.
This work investigates the role of the lift force for the stability of a homogeneous bubble column. Instabilities caused by the lift force may be one important reason for the transition from homogeneous to heterogeneous bubble column. On rising bubbles the lift force acts in a lateral direction, when gradients of the liquid velocity are present. Non-uniform liquid velocity fields may be induced if the gas fraction is not equally distributed, e.g. caused by local disturbances. This feedback mechanism is studied in the paper. It was found, that a positive lift coefficient (small bubbles) stabilizes the flow, while a negative coefficient (large bubbles) leads to unstable gas fraction distributions, and thus it favours the appearance of a heterogeneous bubble column regime. The turbulent dispersion force has always a stabilizing action, i.e., it partially compensates the destabilization induced by a negative lift coefficient. A stability analysis for a mono-dispersed system nevertheless showed, that influence of the lift force is much larger, compared to the influence of the turbulent dispersion force, if only bubble induced turbulence is considered. Thus, the stability condition is practically the positive sign of the lift force coefficient. The extension of the analysis to two bubbles classes, from which one being small enough to have a positive lift coefficient, results in a minimum fraction of small bubbles needed for stability. Finally a generalized criterion for N bubble classes and for a continuous bubble size distribution is given. 相似文献
16.
Jung Hoon Yang Young Gul Hur Ho-Tae Lee Jung-Il Yang Hak-Joo Kim Dong Hyun Chun Ji Chan Park Heon Jung Seung Bin Park 《Chemical Engineering Research and Design》2012
In a trayed bubble column, the structure of the partitioning plate plays an important role on the bubble behavior. This study examined the effect of the opening ratio and pore size of the plate on the bubble break-up frequency and bubble size distribution. The sieve tray was used as the partitioning plate. The opening ratio was closely related to gas cap development. The stagnation of bubble flow and a gas cap were observed with an opening ratio less than 48.5%. The gas cap increased with decreasing opening ratio and increasing superficial gas velocity. The main effect of the sieve tray could be categorized into the additional drag force and bubble break-up depending on the sieve pore size. When the sieve pore size was smaller than the Sauter diameter of the bubble swarm, the movement of rising bubbles was interrupted by the drag force applied by the surrounding mesh lines. On the other hand, when the sieve pore size was larger than the Sauter diameter, the bubbles were affected by the additional bubble break-up. After the bubbles penetrated the sieve tray, the bubble size distribution shifted to a smaller one and the Sauter diameter decreased. 相似文献
17.
18.
19.
We investigate experimentally the occurrence of shape oscillations accompanied by path transition of periodically produced air bubbles rising in water. Within the period of bubble formation, the induced velocity is measured to examine bubble-liquid and bubble-bubble interactions. The flow is produced in a small-scale bubble column with square-shaped cross section. A capillary aerator produces bubbles of size 3.4 mm at a frequency of 5 Hz. Measuring techniques employed are high-speed imaging to capture bubble shape oscillations and path geometry, and laser-Doppler anemometry (LDA) to measure the velocity in the liquid near the rising bubbles. The experimentally obtained bubble shape data are expanded in Legendre polynomials. The results show the occurrence of oscillations by the periodicity of the expansion coefficients in space. Significant shape oscillations accompanied by path transition are observed as the second-mode oscillation frequency converges to the frequency of the initial shape oscillations. The mean velocity field in the water obtained by LDA agrees well with potential theory. An analysis of the decay of the induced flow shows that there is no interaction between the flow fields of two succeeding 3.4 mm bubbles in the rectilinear path when the bubble production frequency is lower than 7.4 Hz. 相似文献
20.
Suk-Hwan Kang Sung-Mo Son Yong Kang Jong-Wook Bae Ki-Won Jun 《Korean Journal of Chemical Engineering》2008,25(4):897-904
The hydrodynamics and heat transfer characteristics were investigated in a slurry bubble column reactor whose diameter was
0.0508 m (ID) and 1.5 m in height. Effects of gas velocity (0.025–0.1 m/s), pressure (0.1–0.7MPa), solid concentration (0–20
vol%) and liquid viscosity (1.0–38.0 mPa s) on the hydrodynamics and heat transfer characteristics were examined. The pressure
difference fluctuations were analyzed by means of attractor trajectories and correlation dimension to characterize the hydrodynamic
behavior in the column. The gas holdup increased with increasing gas velocity or pressure, but decreased with increasing solid
concentration or liquid viscosity. It was found that the attractor trajectories and correlation dimension of pressure fluctuations
were effective tools to describe the hydrodynamic behaviors in the slurry bubble column. The heat transfer coefficient increased
with increasing pressure or gas velocity, but decreased with increasing solid concentration or viscosity of slurry phase in
the slurry bubble column. The heat transfer coefficient value was well correlated in terms of operating variables and correlation
dimension of pressure fluctuations in the slurry bubble column. 相似文献