首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
目的在铝合金表面制备Al2O3-TiB2-Al复合涂层,研究Al,TiO2,B2O3在等离子喷涂中的反应机理。方法采用反应等离子喷涂技术在铝合金表面制备复合涂层,应用扫描电镜与X射线衍射技术测试复合涂层的物相组成和显微组织,并通过燃烧波淬熄试验分析等离子喷涂产物。结果机械球磨可以有效降低粉末发生反应的活化能,等离子喷涂最佳飞行距离范围为150~200 mm。结论喷涂粉末在飞行过程中发生反应,经历了预热、熔化、分解、团聚等过程,验证了最终引燃发生燃烧化学反应的机理。  相似文献   

2.
氧化铝/氧化铝复合材料(Al2O3/Al2O3)是20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,已经发展为与SiC/SiC、C/SiC等非氧化物陶瓷基复合材料并列的一类陶瓷基复合材料。与非氧化物陶瓷基复合材料相比,Al2O3/Al2O3具有长时抗氧化、高温耐腐蚀、低成本等独特优势,已经在航空发动机、地面燃气轮机等军民两用热结构材料领域展现出广阔的应用前景。本文从材料应用的角度出发,系统分析阐述了目前在Al2O3/Al2O3占主导地位的多孔基体Al2O3/Al2O3(P-Al2O3/Al2O3)的增韧机制、成型工艺和性能特点,重点归纳了国外近年来P-Al2O3/Al2O3的工程化应用进展及前景,最后指出了P-Al2O3/Al2O3存在的局限性并展望了未来发展方向,旨在为国内Al2O3/Al2O3体系发展提供借鉴和参考。  相似文献   

3.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

4.
Pre-stressing scratching tests have been preformed on polished surfaces of Al2O3 ceramic under a Rockwell diamond indenter which moved with uniform speed and constant normal load to investigate how the pre-stress contributes to the material removal mechanism. With the measurement of acoustic emission signals as well as indenter tangential forces, surface damages and cross-section of grooves of Al2O3 ceramic were evaluated under the action of different values of pre-stress. It was found that the scratched groove width was increased with the increasing of pre-stress when same normal loads were applied. The existence of pre-stress tends to restrain the crack propagation along the direction of pre-stress, and obvious plastic deformation at the bottom of scratched groove has been observed. Moreover, the fluctuation of tangential force was obviously enhanced, and the magnitude of tangential force in the test of pre-stress was higher than that of without pre-stress. The acoustic emission signals showed that fewer damages were produced in the process of scratching with an appropriate pre-stress. However, the continuing increase of pre-stress would aggravate the machining process.  相似文献   

5.
Coloured Al2O3/ZrO2 multilayers have been deposited onto WC-Co based inserts by a CVD process. Through physical as well as optical analysis of such multilayers, colour is believed to originate from interference. The coatings are obtained with good process reproducibility. It was found that the ZrO2 process used in the multilayer, with ZrCl4 as the only metal chloride precursor, results in a mixture of tetragonal and monoclinic ZrO2 phases. However by adding a relatively small amount of AlCl3 during such a process results in ZrO2 layers being composed of predominantly tetragonal ZrO2 phase. Corresponding multilayers seem to have a more fine grained and smoother morphology whereas multilayers containing monoclinic ZrO2 phase seem to be less perfect with existence of larger grains of ZrO2 which are believed to scatter light and alter the reflectance of such a multilayer. In addition to this, such multilayers were found to be free of or with greatly reduced amount of thermal cracks, normally present in pure CVD grown Al2O3 layers.It is believed that, in the studied Al2O3/ZrO2 multilayers, the observed tetragonal ZrO2 phase is the result of a size effect, where small enough ZrO2 crystallites energetically favor the tetragonal phase. However as the ZrO2 crystallite size distribution is shifted to larger sizes it is believed that a mixture of crystallites with both stable and metastable tetragonal phases as well as a stable monoclinic phase is obtained. The proposed metastable tetragonal ZrO2 phase may in fact explain the absence of thermal cracks in such multilayers through a transformation toughening mechanism, well known in ZrO2 based ceramics.  相似文献   

6.
In-situ plasma spraying (IPS) is a promising process to fabricate composite coatings with in-situ formed thermodynamically stable phases. In the present study, mechanically alloyed Al-12Si, B2O3 and TiO2 powder was deposited onto an aluminum substrate using atmospheric plasma spraying (APS). It has been observed that, during the coating process, TiB2 and Al2O3 are in-situ formed through the reaction between starting powders and finely dispersed in hypereutectic Al-Si matrix alloy. Also, obtained results demonstrate that in-situ reaction intensity strongly depends on spray conditions.  相似文献   

7.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

8.
以Al(NO3)3?9H2O为包覆原料,通过燃烧法制备得到LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和透射电镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明,Al2O3包覆没有改变LiNi0.03Co0.05Mn1.92O4的尖晶石型结构,包覆层厚度约10.6nm。LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料电化学性能得到了明显改善,1 C和10 C倍率下初始放电比容量分别为119.9 mAh?g-1和106.3 mAh?g-1,充放电循环500次后容量保持率分别为88.4%和78.2%,而未包覆的LiNi0.03Co0.05Mn1.92O4在1 C和10 C倍率下初始放电比容量分别为121.2 mAh?g-1和104.0 mAh?g-1,500次循环后容量保持率分别为84.1%和67.6%。LiNi0.03Co0.05Mn1.92O4@Al2O3活化能为32.92 kJ?mol-1,而未包覆材料的活化能为36.24 kJ?mol-1,包覆有效降低了材料Li+扩散所需克服的能垒,提高了材料的电化学性能。  相似文献   

9.
以大气等离子喷涂工艺制备的Al_2O_3陶瓷涂层为模板,利用陶瓷涂层中存在的孔隙和微裂纹,采用水热反应在其内部原位合成具有润滑特性的MoS_2,制备出Al_2O_3/MoS_2的复合涂层。结果表明,通过水热反应在陶瓷涂层原有的微观缺陷中成功合成了MoS_2,合成的MoS_2固体粉末呈类球形状,并且这球状的粉末是由纳米片层状的MoS_2搭建组成的。摩擦试验结果表明,与纯Al_2O_3涂层相比,复合涂层中由于MoS_2润滑膜的形成,其摩擦因数和磨损率都显著降低,且载荷越大,复合涂层的摩擦性能越好。  相似文献   

10.
采用等体积浸渍法制备了以改性氧化铝为载体材料的Pd/Al2O3 密偶催化剂, 并采用H2程序升温还原(H2-TPR), CO 化学吸附和X射线光电子能谱(XPS)对催化剂进行了表征. 在模拟尾气条件下对催化剂的总包反应及与C3H8相关的单反应活性进行了测试. 结果表明, 老化处理后活性PdOx 数量下降, 并伴随有金属态Pd0的产生. 老化后, 起燃温度(T50)和完全转化温度(T90) 分别提高了 76 oC和64 oC, 即催化剂低温活性比高温活性下降明显. 对比新鲜和老化催化剂上单反应活性, 结果表明, 老化后无水条件下有NO参与的反应的低温活性下降显著. 老化处理过程突出了NO对低温活性的抑制作用和H2O对高温活性的促进作用.  相似文献   

11.
The conventional molybdenum alloys, lacking of hard particles enhancing wear property, have relative poor wear resistance though they are widely used in wear parts. To resolve the above question, Mo alloys reinforced by in-situ Al2O3 particles are developed using powder metallurgy method. The in-situ α-Al2O3 particles in molybdenum matrix are obtained by the decomposition of aluminum nitrate after liquid-solid incorporation of MoO2 and Al(NO3)3 aqueous solution. The α-Al2O3 particles well bonded with molybdenum distribute evenly in matrix of Mo alloys, which refine grains of alloys and increase hardness of alloys. The absolute density of alloy increases firstly and then decreases with the increase of Al2O3 content, while the relative density rises continuously. The friction coefficient of alloy, fluctuating around 0.5, is slightly influenced by Al2O3. However, the wear resistance of alloy obviously affected by the Al2O3 particles rises remarkably with the increasing of Al2O3 content. The Al2O3 particles can efficiently resist micro-cutting to protect molybdenum matrix, and therefore enhances the wear resistance of Mo alloy.  相似文献   

12.
本文采用原子层沉积(ALD)的方法,选择三甲基铝(TMA)和H2O2作为反应前驱体,在高定向热解石墨(HOPG)基体上沉积Al2O3。系统研究了反应温度和生长周次对Al2O3生长行为的影响。研究表明:受HOPG表面饱和成键的影响,Al2O3在衬底表面处形核困难,在生长初期主要表现为台阶处择优生长,其形态为线状结构。当沉积100周次Al2O3时,其中在沉积温度为50 °C、150 °C和200 °C时呈现为纳米线状结构,而在100 °C时呈现为非连续薄膜。随着生长周次的增加,不同温度下沉积态Al2O3都趋于形成连续薄膜,表明其生长行为发生了由三维岛状生长模式向二维平面生长模式的转变。分析认为,生长模式的转变是由纳米线状结构横向生长造成的;横向生长速率主要受生长温度影响。拉曼结果表明:沉积后的石墨烯层结构未受影响,可保留其原有的优越性能。  相似文献   

13.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

14.
Al2O3, Al2O3-Cr2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction. Electron probe microanalyzer was employed to investigate the polished and fractured surface morphologies of the coatings. Mechanical properties including microhardness, fracture toughness and bending strength were evaluated. The results indicate that the addition of Cr2O3 is conducive to the stabilization of α-Al2O3. Compared with the pure Al2O3 and Cr2O3 coatings, Al2O3-Cr2O3 composite coatings show lower porosities and denser structures. Heterogeneous nucleation of α-Al2O3 occurs over the isostructural Cr2O3 lamellae and partial solid solution of Al2O3 and Cr2O3 might be occurring as well. Furthermore, grain refining and solid solution strengthening facilitate the mechanical property enhancement of Al2O3-Cr2O3 composite coatings.  相似文献   

15.
A new technology—thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3  composite was prepared successfully. The metallographic analysis and performance test show that the microstructure of parts is dense and mechanical properties are excellent with the volume fraction of Al is 37 %. The bend strength and fracture toughness of the composite are about 570-690 MPa and 8.5-16.8 MPa m1/2, respectively. Comparing with reaction in situ and high temperature oxidation technologies the bending strength and fracture toughness are improved greatly. At the same time, it shows that the technology parameters have great influences on the properties. So it is feasible to prepare metal/ceramics composites by the proposed technology.  相似文献   

16.
Al2O3陶瓷因具有很高的强度和耐蚀性受到广泛关注。但由于相对较差的韧性限制了其广泛应用。Al2O3陶瓷增韧的方式很多,本文采用微米ZrB2来增韧氧化铝陶瓷,探讨复相陶瓷烧结工艺,并研究工艺参数对复相陶瓷力学性能及韧性的影响。结果表明:采用单因素法得到两种陶瓷最佳工艺参数分别是纯α-Al2O3陶瓷烧结温度为1500℃,成型压力为450MPa,保温时间为8h,球料比为1/2,保压时间为10min;ZrB2(wt,20%)+α-Al2O3 (wt,80%)复相陶瓷烧结温度为1450℃,成型压力为450MPa,保温时间为8h,球料比为1/2,保压时间为10min。其中成型压力、烧结温度和保温时间对复相陶瓷硬度及致密度影响最大。ZrB2的加入,在降低陶瓷烧结温度的同时,可以将纯α-Al2O3陶瓷的断裂韧性由5.2±0.3MPa.m1/2提高到6.7±0.2MPa.m1/2。  相似文献   

17.
采用固-液相共混法制备了多种BN/Al2O3复合粉末,通过冻融法和表面修饰法对BN进行了改性处理,改变表面修饰剂类型和摩尔比得到了前驱体和烧结态BN/Al2O3复合粉末,并利用机械混合法制备了聚合物基BN/Al2O3复合材料,并测试分析了其导热性能。结果表明,经冻融处理的BN分散性和界面相容性明显优于未经冻融处理的BN。多巴胺对BN的改性效果优于聚乙二醇。采用多巴胺作为表面修饰剂且BN与Al(NO3)3的摩尔比为1:1时,能够得到纳米Al2O3均匀包覆的微米BN粉末,即BN/Al2O3微纳复合粉末,其聚合物基复合材料的导热系数可达0.62 W·m-1·K-1,是纯聚合物导热系数的3倍,是采用纯微米BN粉末制备的聚合物基复合材料导热系数的1.5倍。在BN表面附着的Al2O3可以形成层状热传导通道,能够有效提高聚合物基BN/Al2O3复合材料的热导率。  相似文献   

18.
Solid solution ceramics (Al2O3)x(Cr2O3)1−x with different x in the range of 0 < x < 1 were synthesized via traditional ceramic production method. X-ray diffraction results and Rietveld refinements indicated that all samples possessed rhomb-centered structure and continuous solid solutions were synthesized. The samples were composed of irregular grains with several micrometers in diameter. Temperature dependence of magnetization measurements showed monotonous decreasing Néel temperature with increasing x and percolation effect happened with threshold of x = 0.65. As x became higher, weak ferromagnetism was observed in the samples. Field dependence of magnetization measurements further confirmed the weak ferromagnetism in the samples with x = 0.7, 0.8 and 0.9.  相似文献   

19.
Al2O3-Ce0.5Zr0.5O2 catalytic powders were synthesized by the coprecipitation (ACZ-C) and mechanical mixing (ACZ-M) methods, respectively. As-synthesized powders were characterized by XRD, Raman spectroscopy, surface area and thermogravimetric analyses. It was found that the mixing extent of Al3+ ions affected the phase development, texture and oxygen storage capacity (OSC) of the Ce0.5Zr0.5O2 powder. Single phase of ACZ-C could be maintained without phase separation and inhibit α-Al2O3 formation up to 1200 °C. The specific surface area value of ACZ-C (81.5 m2/g) was larger than that of ACZ-M (62.1 m2/g) and Ce0.5Zr0.5O2 (17.1 m2/g) powders, which were calcined at 1000 °C. In comparison with ACZ-C and Al2O3, which were calcined at high temperature (900–1200 °C), it was found that the degradation rate of specific surface area of ACZ-C was lower than that of Al2O3. ACZ-C sample showed a higher thermal stability to resist phase separation and crystallite growth, which enhanced the oxygen storage capacity property for Ce0.5Zr0.5O2 powders.  相似文献   

20.
We studied surface modification of a double layer protective coating on steel induced by single fs laser pulse irradiation in ambient air. The outer alumina (Al2O3) layer, which protects against aggressive environments, was 1.7 μm thick and the titanium aluminum nitride (TiAlN) layer in contact with the steel surface had a thickness of 1.9 μm. The pulses (λ = 775 nm, τ = 200 fs) were generated by a Ti:sapphire laser source. The pulse energy was varied from 0.32 μJ to 50 μJ, corresponding to an incident laser fluence of 0.11 J cm− 2 to 16.47 J cm− 2. The surface damage threshold was found to be 0.20 J cm− 2 and the alumina layer removal was initiated at 0.56 J cm− 2. This selective ablation of alumina was possible in a wide range of fluences, up to the maximum applied, without ablating the TiAlN layer beneath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号