首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Ocampo  F Chejne  J Espinel  J Aguirre 《Fuel》2003,82(2):161-164
The main results of an experimental work on gasification of Colombian coal in a fluidised bed are reported in this paper. Experiments were carried out at different steam/coal (Fs/Fc) and air/coal (Fa/Fc) ratios and temperatures of gasifying agent. In addition, the influence of bed temperature on coal conversion was analysed. Results show a maximum value in the curve of high heating value versus Fa/Fc. From the environmental standpoint, low concentrations of sulphur compounds were obtained but more work should be done in order to decrease particulate matter.  相似文献   

2.
F. Chejne  J.P. Hernandez 《Fuel》2002,81(13):1687-1702
A one-dimensional steady state mathematical model and a numerical algorithm have been developed to simulate the coal gasification process in fluidised bed. The model incorporates two phases, the solid and the gas. The gaseous phase participates in the emulsion (with the solid phase) and forms the bubble. The solid phase is composed of carbonaceous material, limestone and/or inert bed material. The model can predict temperature, converted fraction, and particle size distribution for the solid phase. For the gaseous phase, in both emulsion and bubble, it can predict profiles of temperature, gas composition, velocities, and other fluid-dynamic parameters. In the feed zone, a Gaussian distribution for the solid particle size is considered. This distribution changes due to attrition, elutriation, consumption and drag inside the reactor. A system of 29 differential and 10 non-linear equations, derived from the mass, energy and momentum balances for each phase, at any point along the bed height, are solved by the Gear and Adams Method. Experimental data from the Universidad de Antioquia and Universidad Nacional-Medellin have been used to validate the model. Finally, the model can be used to optimise the gasification process by varying several parameters, such as excess of air, particle size distribution, coal type, and geometry of the reactor.  相似文献   

3.
Y. C. Choi  X. Y. Li  T. J. Park  J. H. Kim  J. G. Lee 《Fuel》2001,80(15):2193-2201
The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k– turbulence model was used for the gas phase flow while the Random-Trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy break-up (EBU) model, were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed information about the flow field, temperature and species concentration distributions inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as a function of O2/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measured quality of the syngas was better than the calculated one when the O2/coal ratio increases. This result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.  相似文献   

4.
British Coal Corporation has been developing an air-blown spouted fluidised bed gasification process for the production of low calorific value fuel gas. Development of the gasifier at atmospheric pressure for the industrial market has established the commercial basis for a flexible gasification process, which can achieve coal conversion efficiencies of up to 95%. For larger-scale use, a pressurised gasifier is under development as part of an integrated partial gasification combined cycle, coal-fired, electricity generating system. Known as the British Coal Topping Cycle, the system offers significant advantages in terms of improved thermal efficiency, reduced generating costs and low environmental impact. The paper outlines the gasifier development programme for both applications.  相似文献   

5.
The gasification characteristics of three South African bituminous coals were investigated in a bubbling fluidised bed reactor. The three coals are similar in rank, but two are inertinite-rich coals and the third has a high vitrinite content. The microstructural characteristics of the parent coals and their resultant chars were determined using XRD, FT-IR, Raman and petrographic analysis. The microstructural changes that occurred in the organic (maceral) and the inorganic (mineral) fractions of the selected coals were evaluated. The change in the carbon structure was correlated to the proportions of inertinite and vitrinite macerals in the coals. High vitrinite content resulted in an increase in the order of the disordered carbon structure after gasification and this leads to greater graphitised ordered carbon structures. While a high inertinite content resulted in low or no structural transformation of the chemical structure. The transformation of inorganic mineral constituents of the coal was correlated to the amount of inertinite present in the selected coals. Higher proportions of inertinite macerals and inertinitic chars resulted in higher proportions of melted minerals. Char samples with low proportions of organic matter resulted in higher proportion of melted minerals covering the char surface.  相似文献   

6.
Three promising biomass fuels for southern Mediterranean regions were tested for their agglomeration tendency in an atmospheric lab-scale fluidised bed (FB) gasifier using quartz and olivine as bed materials. The defluidisation temperatures of the energy crops Giant Reed (Arundo donax L.) and Sweet Sorghum bagasse were respectively approx. 790 °C and 810 °C, in both bed materials, while the agro industrial residue olive bagasse caused defluidisation of the quartz bed at 830 °C and olivine bed at > 850 °C. Agglomerates from these tests were analysed with SEM/EDS. Coatings and necks between bed particles were formed due to ash derived potassium silicate melt. For the first two fuels cluster-type agglomerates around remains of char particles were observed. Thermodynamic equilibrium simulations of each chemical system were performed to cross examine the predicted ash melting temperatures and chemistry with experimental findings. Predictions of potassium liquid compounds, like K2O·SiO2(l) were verified by EDS analyses on the particle coatings. FB gasification of olive bagasse resisted defluidisation up to higher temperatures because of its lower potassium and higher calcium content, especially in the case of olivine bed. The latter experimental finding coincided with thermodynamic predictions.  相似文献   

7.
Steam gasification experiments were performed using a low-rank coal from South Australia, a marine microalga, and a blend of leached microalgal biomass and coal, in a spouted, fluidized bed reactor. The effect of different operating conditions – air-to-fuel ratio (A/F), steam-to-fuel ratio (S/F) and bed temperature (Tb) – on the producer gas composition was investigated. Producer gas compositions were analyzed and samples of bed material were also examined to identify ash components formed during each experiment. The optimum operating conditions for coal gasification, in this system, were identified to occur with A/F = 1.82, S/F = 0.75 and Tb = 850 °C. These conditions resulted in a producer gas with the highest heating value (per mass of fuel fed), the highest extent of carbon conversion and the optimum H2:CO ratio for Fischer–Tropsch synthesis. In addition, preliminary attempts to gasify a sun-dried marine microalga are reported. The dried biomass, sieved to 1.0–3.35 mm, was gasified with air and steam. Preliminary experiments, utilizing the as-received biomass, proved unsuccessful due to rapid bed sintering. Leaching of the algal biomass to remove the extra-cellular salt and co-gasification of the resultant biomass (10 wt%) with low-rank coal also proved unsuccessful due primarily to blockages of the downstream product lines most likely due to attrition of the algae feed in the screw feeder and elutriation from the bed.  相似文献   

8.
Studies of the gasification of char in CO2 at elevated temperatures are necessary for the development of IGCC technology. Experiments at high heating rates and elevated temperatures revealed that the temperature dependence of gasification reactivity was very different for low compared with high temperature ranges. To elucidate these mechanisms, the reaction of mineral matter and the change in morphology during gasification of a char at elevated temperatures were examined by char characterisation. CO2 gasification experiments showed a large difference in gasification rate for chars prepared at higher temperatures compared to those prepared at lower temperatures. Changes in char particle morphology and mineral matter during gasification are also quite different. At higher carbonisation temperatures, mineral reactions during pyrolysis, which occurs in addition to ash fusion, appear to be one of the factors accounting for these differences. Certainly, a change of mechanism is involved. Graphite enrichment may also contribute to the decrease in char reactivity.  相似文献   

9.
Results are presented for gasification of coal and char by means of air or air-steam mixtures in fluidised bed reactors of three different volumes. Two sizes of coal feedstock particles, 0.5-1.0 mm and 1.0-1.5 mm, and one size of char particles, 0.5-1.5 mm, were used. The calorific value of generated gas and the carbon conversion are presented as a function of particle residence time. For coal gasification higher carbon conversion has been obtained at the same particle residence time than for char gasification. For the steam gasification, a lower gas heating value of about 4 MJ/m3 (S.T.P.) was obtained.  相似文献   

10.
A coal gasification mathematical model that can predict temperature, converted fraction and particle size distribution for solids have been developed for a high pressure fluidized bed. For gases in both emulsion and bubble phase, it can predict temperature profiles, gas composition, velocities and other fluid-dynamic parameters. In the feed zone, it could be considered a Gaussian distribution or any other distribution for the solid particle size. Experimental data from literature have been used to validate the model. Finally, the model can be used to optimize the gasification process changing several parameters, such as excess of air, particle size distribution, coal type and reactor geometry.  相似文献   

11.
The discrete element method-large eddy simulation (DEM-LES) is used to model coal combustion at the particle level in a bubbling fluidized bed. The gas phase is modelled as a continuum and the solid phase is modeled by DEM. Chemical reactions consist in the heterogeneous reactions of char with O2, CO, CO2, NO, and N2O, and in the homogeneous reactions involving CO, O2, NO, and N2O. The colliding particle-particle heat transfer is based on the analysis of the elastic deformation of the spheres during their contact. The model predicts the effects of the particle heterogeneous flow structure on the thermal characteristics of coal particles when heating and burning, and the gaseous emissions from a fluidized sand-coal binary mixture. The heating rates are 1627 and for, respectively, 0.8 and diameter coal particles fed into the fluidized bed. The instantaneous contribution of the collision heat transfer is weak, less than 5.0% of the total power exchanges (coal combustion, radiation, convection and collision) during the heating and 1.5% during the combustion. The temperature of the coal particles exceeds the bed temperature, which is in qualitative agreement with experimental data from literature. The effects of the diameter of coal particles, of the bed temperature, and of the inlet gas velocity on the thermal characteristics are also studied.  相似文献   

12.
Australian bituminous coal (Hoskisson) was gasified with oxygen and steam in a 0.4m diameter spouted bed reactor at atmospheric pressure and temperatures of 1050–1170 °C to produce medium calorific value gas. High-ash agglomerates fell through the throat of the spouted bed under restricted gasification conditions, with no simultaneous loss of coal. The effects of temperature, steam-oxygen ratio, coal feed rate and coal size on carbon conversion, production of ash agglomerates, gas composition and decompsition of steam were established.  相似文献   

13.
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

14.
Gasification of high ash India coal has been studied in a laboratory-scale, atmospheric fluidized bed gasifier using steam and air as fluidizing media. A one-dimensional analysis of the gasification process has been presented incorporating a two-phase theory of fluidization, char gasification, volatile release and an overall system energy balance. Results are presented on the variation of product gas composiiton, bed temperature, calorific value and carbon conversion with oxygen and steam feed. Comparison between predicted and experimental data has been presented, and the predictions show similar trends as in the experiments.  相似文献   

15.
An experimental campaign was carried out with a circulating fluidised bed (CFB) pilot scale combustor to study the role of coal bound kaolin in the fate of solid recovered fuel (SRF) originated halide aerosols. A combustion experiment was carried out with SRF-Spruce Bark mixture as a reference. High kaolinite coal and paper pigment kaolin, one at a time, were mixed with the SRF-Bark in increasing proportions until dp < 1 μm fine particles were absent as measured from 780 °C combustion gases by means of a dilution probe and low pressure impactor (LPI). This fine particle mode was absent after mixing sufficiently either coal or kaolin with SRF-Bark and only traces of water soluble alkali metal salts were found in the CFB fly ash. These conditions were achieved when kaolin was mixed with the SRF-Bark for 52 times on a molar basis compared to the Na + K initially found in the aerosols. This proportioning was found to be the same for the additive kaolin and coal bound kaolinite. Na and K in the fly ash seem to be bound chemically to the kaolin as alkali aluminosilicates rather than in water soluble alkali sulphates. This is indicated by their solubility behaviour.  相似文献   

16.
The Miscanthus X giganteus (MXG) presents many advantages (high yield, perennial crop, easy harvesting…) so it can be considered as a good candidate in terms of renewable energy sources. Several works have been carried out and were devoted to the MXG, especially in the agricultural field, but this study is the first which deals with gasification in order to produce syngas. The catalytic steam gasification of MXG in a fluidised bed reactor into presence of olivine based catalysts was investigated. Three parameters were studied, the temperature (800 °C and 900 °C), the pellets size (6 mm and 8 mm) and the nature of catalyst (olivine and Ni/olivine). Noteworthy is the efficiency shown by the Ni/olivine at 800 °C, which leads to the production of 1.7 m3 kg− 1 daf of gas, containing 50% of H2. Ni/olivine catalyst was characterised by XRD, TPR and SEM-EDX in order to monitor its structural changes during the process. Moreover, a solvent system of tar recovery was tested, which allows to obtain a more representative set of the whole tars. Then, the tars composition was determined by GC/MS. The identification of different compounds shows the presence of different PAHs, in majority naphthalene.  相似文献   

17.
基于Eulerian-Lagrangian方法建立了两段式干煤粉气流床的三维CFD计算流体动力学模型,利用均相与非均相多步化学反应动力学确定煤气化反应,用k-ε模型描述气相湍流流动,用随机轨道模型追踪煤粉颗粒的运动轨迹,模拟了气流床内的煤气化过程。在氧/煤质量比为0.9,1.0和1.1时,基于文献实验条件对不同反应机理进行数值模拟,通过结果对比获得最佳反应机理。考察了氧煤比为1.0时上下两阶段煤/氧比对煤气化特性的影响。结果表明,选用焦炭和挥发物完全燃烧反应、忽略CO参与气相燃烧反应的反应机理(Case E)的模拟结果与实验数据非常吻合,误差小于2%。当一级喷嘴(A-A水平)煤和氧化剂喷入量达到并超过给煤量和进气量的50wt%时,合成气组分、碳转化率和有效成分等气化炉总体性能指标较好。在一级喷嘴喷入70wt%煤和60wt%氧气时碳转化率最大,为99.6%,一级喷嘴喷入50wt%煤和50wt%氧气时合成气组分最佳,最大合成气产率为78.24mol%。  相似文献   

18.
Steam gasification of a Victorian brown coal was performed in an atmospheric bubbling fluidized-bed reactor with continuous feeding of the coal. The gasification converted no more than 28, 51 and 71% of the nascent char (on a carbon basis) at 1120, 1173 and 1223 K, respectively. The char recovered from the fluidized bed was, nonetheless, gasified toward complete conversion when exposed to steam in another reactor, in which volatiles from the pyrolysis were absent while interaction between the char and products from the gasification was minimized. Atmosphere created in the fluidized bed thus prevented the char gasification from taking place beyond upper-limit conversion. In the absence of volatiles, nascent char underwent gasification catalyzed by inherent metallic species and non-catalytic gasification in parallel. The non-catalytic gasification was greatly decelerated by the presence of H2 in the gas phase due to its dissociative chemisorption onto free carbon sites forming H-laden carbon. H2 was, however, not a so strong inhibitor as to terminate the gasification. It was rather suggested that much more H-laden carbon was formed through dissociative chemisorption of volatiles and/or chemisorption of hydrogen radical from thermal cracking of volatiles in the gas-phase, which resulted in prevention of the non-catalytic gasification. It seemed that the char was converted in the fluidized-bed mainly by the catalytic gasification, while the conversion was limited due to deactivation of metallic species within the char matrix and their release from the char.  相似文献   

19.
A bituminous and a sub-bituminous coal from Western Canada have been gasified in oxygen-steam and air-steam mixtures in a 0.30-m diameter, 50 kg coal/h continuous spouted bed reactor. Results are presented to show the effects of the blast composition and reactor temperature on gas heating value and carbon conversion. Operation in the ash agglomeration mode is illustrated, and the role of K2CO3 as catalyst explored. Results from a wide range of experimental gasification conditions are compared with predictions of an equilibrium model.  相似文献   

20.
L. Armesto  A. Bahillo  K. Veijonen  A. Plumed 《Fuel》2003,82(8):993-1000
Recently new environmental regulations of fossil fuels have further increased interest in the use of waste and biomass for energy generation. Co-combustion is generally viewed as the most cost-effective approach to biomass and wastes utilisation by the electric utility industry.The aim of this paper is to assess the feasibility of co-firing coal and a very specific biomass waste from the olive oil industry: foot cake, in a fluidised bed. This waste is quite difficult material to be used in combustion process, due to its high moisture content and alkaline content in ashes.Two different Spanish coals were selected for this study: a lignite and an anthracite. The combustion tests were carried out in the CIEMAT bubbling fluidised bed pilot plant. In order to study the effect of different parameters on the emissions and combustion efficiency, the tests were done using different operating conditions: furnace temperature, share of foot cake in the mixtures and coal type.The pilot plant tests show that the combustion of foot cake/lignite or anthracite mixtures in bubbling fluidised bed is one way to utilise this biomass residue in energy generation. The presence of foot cake in the mixtures has not any significant effect on the combustion efficiency. SO2 and NOx emissions decrease when the amount of foot cake in the mixtures increases, while N2O emission increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号