首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transesterification of palm kernel oil with methanol over mixed oxides of Ca and Zn has been investigated batchwise at 60 °C and 1 atm. CaO·ZnO catalysts were prepared via a conventional co-precipitation of the corresponding mixed metal nitrate solution in the presence of a soluble carbonate salt at near neutral conditions. The catalysts were characterized by using techniques of X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results indicated that the mixed oxides possess relatively small particle sizes and high surface areas, compared to pure CaO and ZnO. Moreover, the combination of Ca and Zn reduced the calcination temperature required for decomposition of metal carbonate precipitates to active oxides. Influences of Ca/Zn atomic ratio in the mixed oxide catalyst, catalyst amount, methanol/oil molar ratio, reaction time, and water amount on the methyl ester (ME) content were studied. Under the suitable transesterification conditions at 60 °C (catalyst amount = 10 wt.%, methanol/oil molar ratio = 30, reaction time = 1 h), the ME content of >94% can be achieved over CaO·ZnO catalyst with the Ca/Zn ratio of 0.25. The mixed oxide can be also applied to transesterification of palm olein, soybean, and sunflower oils. Furthermore, the effects of different regeneration methods on the reusability of CaO·ZnO catalyst were investigated.  相似文献   

2.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

3.
Oil transesterification over calcium oxides modified with lanthanum   总被引:2,自引:0,他引:2  
Investigations were conducted on a series of calcium and lanthanum oxides catalyst for biodiesel production. Mixed oxides catalyst showed a superior transesterification activity over pure calcium or pure lanthanum oxide catalysts. The catalyst activity was correlated with surface basicity and specific surface areas. The effects of water and free fatty acids (FFA) levels in oil feedstock, water and CO2 in air, mass ratio of catalyst, molar ratio of oil to methanol, and reaction temperature on fatty acid methyl ester (FAME) yield were investigated. Under optimal conditions, FAME yields reached 94.3% within 60 min at 58 °C. Mixed CaO-La2O3 catalyst showed a high tolerance to water and FFA, and could be used for converting pure or diluted unrefined/waste oils to biodiesel.  相似文献   

4.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature.  相似文献   

5.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

6.
An environmentally benign process for the production of methyl ester using γ-alumina supported heterogeneous base catalyst in sub- and supercritical methanol has been developed. The production of methyl ester in refluxed methanol conventionally utilized double promoted γ-alumina heterogeneous base catalyst (CaO/KI/γ-alumina); however, this process requires a large amount of catalyst and a long reaction time to produce a high yield of methyl ester. This study carries out methyl ester production in sub- and supercritical methanol with the introduction of an optimized catalyst used in the previous work for the purpose of improving the process and enhancing efficiency. CaO/KI/γ-Al2O3 catalyst was prepared by precipitation and impregnation methods. The effects of catalyst amount, reaction temperature, reaction time, and the ratio of oil to methanol on the yield of biodiesel ester were studied. The reaction was carried out in a batch reactor (8.8 ml capacity, stainless steel, AKICO, Japan). Results show that the use of CaO/KI/γ-Al2O3 catalyst effectively reduces both reaction time and required catalyst amount. The optimum process conditions were at a temperature of 290 °C, ratio of oil to methanol of 1:24, and a catalyst amount of 3% over 60 min of reaction time. The highest yield of biodiesel obtained under these optimum conditions was almost 95%.  相似文献   

7.
The purpose of the work to study biodiesel production by transesterification of Jatropha oil with methanol in a heterogeneous system, using alumina loaded with potassium nitrate as a solid base catalyst. Followed by calcination, the dependence of the conversion of Jatropha oil on the reaction variables such as the catalyst loading, the molar ratio of methanol to oil, reaction temperature, agitation speed and the reaction time was studied. The conversion was over 84% under the conditions of 70 °C, methanol/oil mole ratio of 12:1, reaction time 6 h, agitation speed 600 rpm and catalyst amount (catalyst/oil) of 6% (w). Kinetic study of reaction was also done.  相似文献   

8.
This study examined the effect of a heterogeneous base catalyst on the transesterification of soybean oil assisted by microwave irradiation. The results showed that nanopowder calcium oxide (nano CaO) was very efficient in converting soybean oil to biodiesel, and microwave irradiation is more efficient than the conventional bath for biodiesel production. However, the water content of methanol can not improve the conversion rate catalyzed by nano CaO.The suitable reaction conditions that can reach a 96.6% of conversion rate were methanol/oil molar ratio, 7:1; amount of catalyst used, 3.0 wt.%; reaction temperature, 338 K; and reaction time, 60 min. The biodiesel produced is within the limits prescribed by the standard of EN-14214.  相似文献   

9.
Rapid transesterification of soybean oil with phase transfer catalysts   总被引:1,自引:0,他引:1  
Biodiesel is a renewable, non-toxic and biodegradable alternative fuel for compression ignition engines. Biodiesel is produced mainly through base-catalyzed transesterification of animal fats or vegetable oils. However, the conventional base-catalyzed transesterification is characterized by slow reaction rates at both initial and final reaction stages limited by mass transfer between polar methanol/glycerol phase and non-polar oil phase.In our study we used phase transfer catalysts (PTCs) to facilitate anion transfer between polar methanol/glycerol phase and non-polar oil phase to speed up transesterification. The benefits of transesterification by PTCs include no need for expensive aprotic solvents, potentially simpler scaleup and higher activity (shorter reaction time). Various PTCs were investigated for base-catalyzed transesterification. Experimental results showed that base-catalyzed transesterification was enhanced with an effective PTC, indicated by the formation of high methyl ester (ME) content within a relatively short time. Individual operating variables such as molar ratios of methanol to oil, total OH to oil, PTC to base catalyst and agitation including ultrasound were investigated for transesterification with PTC. Product analyses showed that ME content higher than 96.5 wt.% was achieved after only 15 min of rapid transesterification with PTC (tetrabutylammonium hydroxide or tetrabutylammonium acetate as PTC, MeOH/oil molar ratio of 6, total OH/oil molar ratio of 0.22, PTC/KOH molar ratio of 1 and 60 °C). Free and total glycerol contents in the final product from 15 min rapid transesterification with PTC were lower than maximum allowable limits in the standard specification for biodiesel.  相似文献   

10.
This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work resulted in the selection of CaO and CaO modified with Li catalysts, which showed very good catalytic performances with high activity and stability. In fact FAME yields higher than 92% were observed in two consecutive reaction batches without expensive intermediate reactivation procedures. Therefore, those catalysts appear to be suitable for biodiesel production.  相似文献   

11.
A heterogeneous acid catalyst, Fe3+-vanadyl phosphate, prepared by the isomorphous substitution of some VO3+ groups in vanadyl phosphate with trivalent metal Fe3+, was found to be active for the transesterification of soybean oil with methanol. When the transesterification reaction was carried out with a molar ratio of methanol to oil of 30:1, a reaction temperature of 473 K, a reaction time of 3 h and a catalyst amount of 5 wt%, the maximum conversion of soybean oil was 61.3%. Moreover, the catalytic activity of this catalyst was not significantly affected by the presence of free fatty acids and water in the reactants, and it also exhibits catalytic activity towards the esterification of free fatty acids with methanol. Further, it was shown that the spent catalyst could be easily reactivated by calcination at 773 K in air. There was very little change in the catalytic activity of the regenerated catalyst, even after five cycles.  相似文献   

12.
A novel heterogeneous solid base catalyst was prepared by loading of Ca‐Al‐graphite oxide with mixed potassium salts and applied in the transesterification of soybean oil with methanol to produce biodiesel. The catalysts were characterized by Hammett indicators, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray spectrometry, and transmission electron microscopy. The effects of the methanol‐to‐oil molar ratio, catalyst amount, reaction temperature, stirring rate, and reaction time were investigated to optimize the transesterification reaction conditions. Moreover, the prepared catalyst retains its activity after being used for four cycles. In particular, the solid base catalyst can be effectively and easily separated from the reaction system, which may provide significant benefits for the development of an environmentally benign and continuous process for preparing biodiesel.  相似文献   

13.
Biodiesel production through transesterification over natural calciums   总被引:1,自引:0,他引:1  
Transesterification of palm kernel oil (PKO) with methanol over various natural calciums, including limestone calcite, cuttlebone, dolomite, hydroxyapatite, and dicalcium phosphate, has been investigated at 60 °C and 1 atm. The study showed that dolomite, mainly consisting of CaCO3 and MgCO3, is the most active catalyst. The calcination temperature largely affected the physicochemical properties, as evidenced by N2 adsorption-desorption measurement, TGA, SEM and XRD, and the transesterification performance of the resultant catalysts. It was found that the calcination of dolomite at 800 °C resulted in a highly active mixed oxide. CaO was suggested to be the catalytically active site responsible for the methyl ester formation. Under the suitable reaction conditions, the amount of dolomite calcined at 800 °C = 6 wt.% based on the weight of oil, the methanol/oil molar ratio = 30, and the reaction time = 3 h, the methyl ester content of 98.0% can be achieved. The calcined dolomite can be reused many times. The analyses of some important fuel properties indicated that the biodiesel produced had the properties that meet the standard of biodiesel and diesel fuel issued by the Department of Energy Business, Ministry of Energy, Thailand.  相似文献   

14.
Production of fatty acid methyl esters (FAME) via the transesterification of different vegetable oils and methanol with a limestone-derived heterogeneous catalyst was investigated in a fixed-bed reactor at 65 °C and ambient pressure. This heterogeneous catalyst, as a 1 or 2 mm cross-sectional diameter extrudate, was prepared via a wet mixing of thermally treated limestone with Mg and Al compounds as binders and with or without hydroxyethyl cellulose (HEC) as a plasticizer, followed by calcination at 800 °C. The physicochemical properties of the prepared catalysts were characterized by various techniques. Palm kernel oil, palm oil, palm olein oil and waste cooking oil could be used as the feedstocks but the FFA and water content must be limited. The extrudate catalyst prepared with the HEC addition exhibited an enhanced formation of FAME due to an increased porosity and basicity of the catalyst. The FAME yield was increased with the methanol/oil molar ratio. The effect of addition of methyl esters as co-solvents on the FAME production was investigated. The structural and compositional change of the catalysts spent in different reaction conditions indicated that deactivation was mainly due to a deposition of glycerol and FFA (if present). The FAME yield of 94.1 wt.% was stably achieved over 1500 min by using the present fixed-bed system.  相似文献   

15.
S. Hawash  F. Zaher  O. Kenawi 《Fuel》2009,88(3):579-582
Transesterification of Jatropha oil using supercritical methanol and in absence of a catalyst has been studied under different conditions of temperature (from 512 to 613 K), pressure (from 5.7 to 8.6 MPa) and molar ratio of alcohol to oil (from 10 to 43 mol alcohol per mol oil). The reaction products were analyzed for their content of residual triglycerides, glycerol, monoglycerides, diglycerides, esters and free acids by high performance liquid chromatography (HPLC), thin layer chromatography (TLC) and titration against KOH.The results have revealed that 100% yield of esters can be obtained using super critical methanol within four min only, at a temperature of 593 K and under a pressure of 8.4 MPa pressure. The molar ratio of methanol to oil was 43:1.  相似文献   

16.
17.
Kalsilite based heterogeneous catalyst for biodiesel production   总被引:1,自引:0,他引:1  
Guang Wen  Zifeng Yan  Peng Zhang 《Fuel》2010,89(8):2163-2165
Kalsilite (KAlSiO4) was used as a heterogeneous catalyst for transesterification of soybean oil with methanol to biodiesel. Kalsilite showed relatively low catalytic activity for transesterification reaction. The catalytic activity of this catalyst was significantly enhanced by introducing a small amount of lithium nitrate by the impregnation method. A biodiesel yield of 100% and a kinematic viscosity of 3.84 cSt were achieved at a mild temperature of only 120 °C over this lithium modified kalsilite catalyst (2.3 wt.% Li).  相似文献   

18.
E. Rashtizadeh  M. Ghandi 《Fuel》2010,89(11):3393-222
Transesterification of soybean oil (TSO) with methanol to methyl esters (biodiesel) was found to proceed in the presence of KOH loaded on aluminosilicate layers (bentonite, kaolinite), microporous materials (zeolite Y, clinoptiloite), mesoporous materials (MCM-41, Al-MCM-41), some oxides (Al2O3, TiO2, SiO2), and silica gel as heterogeneous catalysts. Effect of reaction parameters such as KOH wt.%, amount of catalyst, reaction time, reaction temperature, molar ratio of methanol to oil and TSO yields up to 99% will be discussed in this presentation. Utilization of bentonite and kaolinite as cheap and eco-friendly solid supports is promising.  相似文献   

19.
The novel efficient procedure has been developed for the synthesis of biodiesel from soybean oil and methanol. K2CO3 supported on MgO has been selected as the most efficient catalyst for the reaction with the yield of 99%. Operational simplicity, low cost of the catalyst used, high yields, short reaction time and reusability are the key features of this methodology.  相似文献   

20.
The methanolysis of rapeseed oil catalyzed by commercial styrene-divinylbenzene macroporous acid resins was performed in a batch reactor at 100-140 °C and 10-46 MPa to study the effect of supercritical carbon dioxide (scCO2) on the performances of the process. Reaction temperatures of 120-140 °C were necessary to obtain high enough yields of fatty acid methyl esters. Upon addition of scCO2 faster transesterification kinetics was obtained also at the lowest investigated operating pressure (10-11 MPa), working in two fluid phase systems. Experiments performed changing the reaction time indicated that most of the esters were formed during the first 3 h. When the pressure was increased at 38-46 MPa, the fluid phases merged in a single one without significant modification of the performances of the process.The enhancement effect of scCO2 on the transesterification kinetics is tentatively discussed in terms of modification of the phase behaviour of the reaction system and swelling of the polymeric acid resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号