首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Converting elemental mercury into divalent compound is one of the most important steps for mercury abatement from coal fired flue gas. The oxidation of elemental mercury was investigated in this paper using dielectric barrier discharge (DBD) non-thermal plasma (NTP) technology at room temperature. Effects of different flue gas components like oxygen, moisture, HCl, NO and SO2 were investigated. Results indicate that active radicals including O, O3 and OH all contribute to the oxidation of elemental mercury. Under the conditions of 5% O2 in the simulated flue gas, about 90.2% of Hg0 was observed to be oxidized at 3.68 kV discharge voltage. The increase of discharge voltage, O2 level and H2O content can all improve the oxidation rate, individually. With O2 and H2O both existed, there is an optimal moisture level for the mercury oxidation during the NTP treatment. In this test, the observed optimal moisture level was around 0.74% by volume. Hydrogen chloride can promote the oxidation of mercury due to chlorine atoms produced in the plasma process. Both NO and SO2 have inhibitory effects on mercury oxidation, which can be attributed to their competitive consumption of O3 and O.  相似文献   

2.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

3.
Element mercury (Hg0) from flue gas is difficult to remove because of its low solubility in water and high volatility. A new technology for photooxidative removal of Hg0 with an ultraviolet (UV)/H2O2 advanced oxidation process is studied in an efficient laboratory-scale bubble column reactor. Influence of several key operational parameters on Hg0 removal efficiency is investigated. The results show that an increase in the UV light power, H2O2 initial concentration or H2O2 solution volume will enhance Hg0 removal. The Hg0 removal is inhibited by an increase of the Hg0 initial concentration. The solution initial pH and pH conditioning agent have a remarkable synergistic effect. The highest Hg0 removal efficiencies are achieved at the UV light power of 36W, H2O2 initial concentration of 0.125 mol/L, Hg0 initial concentration of 25.3 μg/Nm3, solution initial pH of 5, H2O2 solution volume of 600 ml, respectively. In addition, the O2 percentage has little effect on the Hg0 removal efficiency. This study is beneficial for the potential practical application of Hg0 removal from coal-fired flue gas with UV/H2O2 advanced oxidation process.  相似文献   

4.
Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO2) and sulfur trioxide (SO3) may interfere in the removal process. Most of the current literature suggests that SO2 hinders elemental mercury (Hg0) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO2 with oxygen (O2) enhances Hg0 oxidation by promoting Cl2 formation below 100 °C. However, studies in which SO2 was shown to have a positive correlation with Hg0 oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO3 are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO3 is an inevitable product of SO2 oxidation by O2, a reaction that hinders Hg0 oxidation, it readily reacts with water vapor, forms sulfuric acid (H2SO4) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H2SO4 on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.  相似文献   

5.
Several novel oxidation removal processes of elemental mercury (Hg0) from flue gas using combined Fe2+/Mn2+ and heat activated peroxymonosulfate (PMS)/H2O2 solutions in a bubbling reactor were proposed. The operating parameters (e.g., PMS/H2O2 concentration, Fe2+/Mn2+ concentration, solution pH, activation temperature, and Hg0/NO/SO2/O2/CO2 concentration), mechanism and mass transfer-reaction kinetics of Hg0 removal were investigated. The results show that heat and Fe2+/Mn2+ have significant synergistic effect for activating PMS and PMS/H2O2 to produce free radicals to oxidize Hg0. Hg0 removal is strongly affected by PMS/H2O2 concentration, Fe2+/Mn2+ concentration, activation temperature, and solution pH. · and ·OH produced from combined heat and Fe2+/Mn2+ activated PMS/H2O2 play a leading role in Hg0 removal. Under optimized experimental conditions, Hg0 removal efficiencies reach 100, 94.9, 66.9, and 58.9% in heat/Fe2+/PMS/H2O2, heat/Mn2+/PMS/H2O2, heat/Fe2+/PMS, and heat/Mn2+/PMS systems, respectively. Hg0 removal processes in four systems belong to fast reaction and were controlled by mass transfer under optimized experimental conditions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 161–174, 2019  相似文献   

6.
Bench-scale investigations indicate that NO, NO2, hematite (α-Fe2O3), maghemite (γ-Fe2O3), and HCl promote the conversion of gaseous elemental mercury (Hg0) to gaseous oxidized mercury (Hg2+) and/or particle-associated mercury (Hg[p]) in simulated coal combustion flue gases. In this investigation, the effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on Hg transformations were evaluated by injecting them into actual coal combustion flue gases produced from burning subbituminous Absaloka and lignitic Falkirk coals in a 7-kW down-fired cylindrical furnace. A bituminous Blacksville coal known to produce an Hg2+-rich combustion flue gas was also burned in the system. The American Society for Testing and Materials Method D6784-02 (Ontario Hydro method) or an online Hg analyzer equipped to measure Hg0 and total gaseous mercury (Hg[tot]) was used to monitor Hg speciation at the baghouse inlet (160–195 °C) and outlet (110–140 °C) locations of the system. As expected, the baseline Blacksville flue gas was composed predominantly of Hg2+ (Hg2+/Hg[tot]=0.77), whereas Absaloka and Falkirk flue gases contained primarily Hg0 (Hg0/Hg[tot]=0.84 and 0.78, respectively). Injections of NO2 (80–190 ppmv) at 440–880 °C and α-Fe2O3 (15 and 6 wt.%) at 450 °C into Absaloka and Falkirk coal combustion flue gases did not significantly affect Hg speciation. The lack of Hg0 to Hg2+ conversion suggests that components of Absaloka and Falkirk combustion flue gases and/or fly ashes inhibit heterogeneous Hg0–NOx–α-Fe2O3 reactions or that the flue gas quench rate in the 7-kW system is much different in relation to bench-scale flue gas simulators.An abundance of Hg2+, HCl, and γ-Fe2O3 in Blacksville flue gas and the inertness of injected α-Fe2O3 with respect to heterogeneous Hg0 oxidation in Absaloka and Falkirk flue gases suggested that γ-Fe2O3 catalyzes Hg2+ formation and that HCl is an important Hg0 reactant. The filtration of Absaloka and Falkirk combustion flue gases at 150 °C through fabric filters with ≈60 g/m2 γ-Fe2O3 indicated that about 30% of the Hg0 in Absaloka and Falkirk flue gases was converted to Hg2+ and/or Hg(p). HCl injection (100 ppmv) into the Absaloka combustion flue gas converted most of the Hg0 to Hg2+, whereas HCl injection into the Falkirk flue gas converted most of the Hg0 and Hg2+ to Hg(p). Additions of γ-Fe2O3 and HCl did not have a synergistic effect on Hg0 oxidation. The filtration of Absaloka and Falkirk flue gases through much greater fabric filter loadings of 475 g/m2 γ-Fe2O3 essentially doubled the baghouse Hg[tot] removal efficiency to about 50%. Results from this investigation demonstrate the importance of evaluating potential Hg0 reactants and oxidation catalysts in actual coal combustion flue gases.  相似文献   

7.
8.
A novel photochemical spray reactor is first developed and is used to remove Hg0 and simultaneously remove Hg0/SO2/NO from flue gas by ultraviolet (UV)/H2O2 process. The effects of several parameters (UV wavelength, UV power, H2O2 concentration, Hg0 inlet concentration, solution temperature, liquid–gas ratio, solution pH, SO2 concentration, NO concentration, and O2 concentration) on removal of Hg0 by UV/H2O2 process were investigated. Removal mechanism of Hg0 is proposed and simultaneous removal of Hg0, NO, and SO2 is also studied. The results show that the parameters, UV wavelength, UV power, H2O2 concentration, liquid–gas ratio, solution pH, and O2 concentration, have significant impact on removal of Hg0. However, the parameters, Hg0 inlet concentration, solution temperature, SO2 concentration, and NO concentration, only have small effect on removal of Hg0. Hg2+ is the final product of Hg0 removal, and Hg0 is mainly removed by oxidations of H2O2, ·OH, · O, O3, and photoexcitation of UV. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2275–2285, 2014  相似文献   

9.
Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as HgCl2). Because Hg2+ is more condensable and far more water soluble than Hg0, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is important therefore to have an understanding of the behaviour of mercury during coal combustion and the mechanisms of mercury oxidation along the flue gas path. In this study, a temperature programmed decomposition technique was applied in order to acquire an understanding of the mode of decomposition of mercury species during coal combustion. A series of mercury model compounds were used for qualitative calibration. The temperature appearance range of the main mercury species can be arranged in increasing order as HgCl2 < HgS < HgO < HgSO4. Different fly ashes with certified and reference values for mercury concentration were used to evaluate the method. This study has shown that the thermal decomposition test is a newly developed efficient method for identifying and quantifying mercury species from coal combustion products.  相似文献   

10.
《Fuel》2005,84(14-15):1968-1974
Removal of Hg0 vapor from the simulated coal combustion flue gases with a commercial activated carbon was investigated using H2S. This method is based on the reaction of H2S and Hg over the adsorbents. The Hg0 removal experiments were carried out in a conventional flow type packed bed reactor system in the temperature range of 80–150 °C using simulated flue gases having the composition of Hg0 (4.9 ppb), H2S (0–20 ppm), SO2 (0–487 ppm), CO2 (10%), H2O (0–15%), O2 (0–5%), N2 (balance gas). The following results were obtained: in the presence of both H2S and SO2, Hg removal was favored at lower temperatures (80–100 °C). At 150 °C, presence of O2 was indispensable for Hg0 removal from H2S–SO2 flue gas system. It is suggested that the partial oxidation of H2S with O2 to elemental sulfur (H2S+1/2O2=Sad+H2O) and the Clause reaction (SO2+2H2S=3Sad+2H2O) may contribute to the Hg0 removal over activated carbon by the following reaction: Sad+Hg=HgS. The formation of elemental sulfur on the activated carbon was confirmed by a visual observation.  相似文献   

11.
王帅  高继慧  吴燕燕  吴少华 《化工学报》2010,61(12):3251-3257
采用新型一体化脱硫工艺和循环流化床烟气脱硫工艺的脱硫灰为吸附剂,使用固定床反应器,在模拟烟气的条件下研究了两种半干法脱硫灰对汞的吸附及催化氧化特性。研究结果表明,吸附于脱硫灰表面的汞主要以Hg2+的形态存在,多数情况下,更高的汞氧化率伴随有更高的汞吸附率,HCl、Cl2、NO2在脱硫灰的催化作用下能有效氧化Hg0,且不同组分对Hg0的氧化作用可以累积,而NO和SO2抑制了脱硫灰对汞的吸附。脱硫灰中未燃尽碳和Fe2O3对脱硫灰吸附和催化氧化气态汞具有显著促进作用。汞吸附率和氧化率在使用两种脱硫灰作为吸附剂时均随温度升高先增大后减小,这是传质过程和反应速率共同作用的结果。  相似文献   

12.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

13.
CuCl2-SCR catalysts prepared by an improved impregnation method were studied to evaluate the catalytic performance for gaseous elemental mercury (Hg0) oxidation in simulated flue gas. Hg0 oxidation activity of commercial SCR catalyst was significantly improved by the introduction of CuCl2. Nitrogen adsorption, XRD, XRF and XPS were used to characterize the catalysts. The results indicated that CuCl2 was well loaded and highly dispersed on the catalyst surface, and that CuCl2 played an important role for Hg0 catalytic oxidation. The effects of individual flue gas components on Hg0 oxidation were also investigated over CuCl2-SCR catalyst at 350 oC. The co-presence of NO and NH3 remarkably inhibited Hg0 oxidation, while this inhibiting effect was gradually scavenged with the decrease of GHSV. Further study revealed the possibility of simultaneous removal of Hg0 and NO over CuCl2-SCR catalyst in simulated flue gas. The mechanism of Hg0 oxidation was also investigated.  相似文献   

14.
Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 °C, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.  相似文献   

15.
The mechanism and kinetics of the elemental Hg oxidation in flue gas by ozone injection are investigated in detail by using quantum chemistry, kinetic simulation and experimental research. The reaction processes, activation energies and kinetic parameters are calculated and analyzed by quantum chemistry. From the comparison of activation energies, the Hg0 oxidation ability of oxidizing radicals is that: NO3>O3>NO2. The calculated results are in good agreement with literature experimental results. The calculated kinetic parameters are employed for kinetic simulation. The results of kinetic simulation are in good agreement with the experimental results. Results show that, the Hg0 oxidization increases linearly when the mole ratio of O3/NO becomes larger or the reaction temperature becomes higher. The reaction Hg+NO3 = NO2+HgO is the key elemental reaction and the concentration of NO3 is the most important factor for affecting Hg0 oxidation.  相似文献   

16.
对静电纺丝法制备的TiO2和TiO2-V2O5纳米纤维进行光催化脱除模拟烟气中Hg0的研究。对纳米纤维进行了SEM、TEM、XRD、BET和UV-Vis检测。结果表明TiO2-V2O5纳米纤维为锐钛矿,V2O5高度分散在TiO2中。纤维直径在200 nm左右,由粒径为10 nm左右的微粒组成。掺杂V2O5后,纤维的吸光范围扩大,在可见光范围内的吸光度比纯TiO2时有了很大提高。实验研究了不同光照条件、V2O5的掺杂量和循环次数对脱汞的影响,分析了TiO2-V2O5催化脱汞的机理。当V2O5的质量含量为3%时,TiO2-V2O5在可见光下的脱汞率可达到66%,比纯TiO2时的7%有了显著提高;纤维的脱汞性能稳定,多次循环后紫外光和可见光下的脱汞率仍分别保持在80%和65%左右。电子的跃迁和电子、空穴的快速分离是TiO2-V2O5在可见光下脱汞率提高的主要原因。  相似文献   

17.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

18.
This paper reported mercury speciation and emissions from five coal-fired power stations in China. The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/electrostatic precipitator (ESP) locations in these coal-fired power stations, and then various mercury speciation such as Hg0, Hg2+ and HgP in flue gas, was analyzed by using EPA method. The solid samples such as coal, bottom ash and ESP ash, were analyzed by DMA 80 based on EPA Method 7473. Through analysis the mercury speciation varied greatly when flue gas went through FF/ESP. Of the total mercury in flue gas, the concentration of Hg2+ is in the range of 0.11–14.76 μg/N m3 before FF/ESP and 0.02–21.20 μg/N m3 after FF/ESP; the concentration of Hg0 ranges in 1.18–33.63 μg/N m3 before FF/ESP and 0.77–13.57 μg/N m3 after FF/ESP, and that of HgP is in the scope of 0–12.11 μg/N m3 before FF/ESP and 0–0.54 μg/N m3 after FF/ESP. The proportion of Hg2+ ranges from 4.87%–50.93% before FF/ESP and 2.02%–75.55% after FF/ESP, while that of Hg0 is between 13.81% – 94.79% before FF/ESP and 15.69%–98% after FF/ESP, with that of HgP is in the range of 0%–45.13% before FF/ESP and 0%–11.03% after FF/ESP. The mercury in flue gas mainly existed in the forms of Hg0 and Hg2+. The concentrations of chlorine and sulfur in coal and flue gas influence the species of Hg that are formed in the flue gas entering air pollution control devices. The concentrations of chlorine, sulfur and mercury in coal and the compositions of fly ash had significant effects on mercury emissions.  相似文献   

19.
Parametric experiments were carried out to study the interactions of mercury, SO3, and injected activated carbon (AC) in a coal flue gas stream. The levels of SO3 vapor in flue gas were altered by individually varying flue gas temperature, moisture, or sodium fume injection in the flue gas. Meanwhile, mercury emissions with AC injection (ACI) upstream of an electrostatic precipitator (ESP) were evaluated under varied SO3 concentrations. SO3 measurements using a condensation method indicated that low temperature, high moisture content, and sodium fume injection in flue gas shifted SO3 partitioning from the vapor to particulate phase, subsequently improving mercury capture with ACI. 0.08 g/m3 of DARCO® Hg-LH injection only provided approximately 20% mercury reduction across the ESP in a bituminous coal flue gas containing 28 ppm SO3, but mercury capture was increased to 80% when the SO3 vapor concentration was lowered less than 2 ppm. Experimental data clearly demonstrate that elevated SO3 vapor is the key factor that impedes mercury adsorption on AC, mainly because SO3 directly competes against mercury for the same binding sites and overwhelmingly consumes all binding sites.  相似文献   

20.
A pilot-scale TiO2 photocatalytic system using common household fluorescent lamps was tested at a real combustion facility for its ability to control Hg0 emissions. An Hg0 removal efficiency of greater than 90% was achieved under optimum conditions. The photocatalytic reaction units connected in series were more efficient than those connected in parallel. Acid components of the flue gas, such as NO and H2O, exhibited significant negative effects on the Hg0 removal efficiency. There was no difference in Hg0 removal efficiency between the systems employing mono-wavelength and tri-wavelength fluorescent lamps, and the efficiency was enhanced by increasing the amount of irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号