共查询到20条相似文献,搜索用时 0 毫秒
1.
通过聚合溶胶路线制备出稳定的Ti/Zr(摩尔比=1:1)复合溶胶。采用浸浆法,在平均孔径为5~6 nm的片状a-Al2O3/g-Al2O3载体上制备出完整无缺陷的Ti/Zr复合纳滤膜。详细考察了焙烧温度对Ti/Zr粉体的影响,并考察了Ti/Zr复合纳滤膜的性能。结果表明:在较高烧成温度下(500℃),Ti/Zr粉体依然呈无定形态且保持微孔结构。在400℃烧成温度下制备出孔径为1.49 nm的Ti/Zr复合纳滤膜,该膜的截留分子量(MWCO)为880,纯水通量为4.3 L·m-2·h-1·MPa-1。在pH=6,压力0.8 MPa的条件下,该膜对0.005 mol·L-1的MgCl2、CaCl2的截留率分别为85%和78%。 相似文献
2.
将多巴胺和Ui O-66纳米颗粒共沉积在经1,6-己二胺交联的聚醚酰亚胺(PEI)基膜上构建了纳米复合中间层(PDA-UiO-66),并在中间层上进行界面聚合反应制备了耐溶剂复合纳滤膜(TFN-U)。通过FTIR、XRD、SEM、AFM、水接触角测量仪对膜结构进行了表征和测试,探究了Ui O-66质量浓度对TFN-U膜耐溶剂性、耐污染性以及运行稳定性的影响。结果表明,PDA-Ui O-66纳米复合中间层的引入能提高TFN-U膜的渗透通量,当Ui O-66纳米颗粒质量浓度为0.2 g/L时,TFN-U2膜水通量为63.83 L/(m2·h),甲醇通量为28.50L/(m2·h),对刚果红水溶液和刚果红甲醇溶液的截留率为98.2%和93.2%,经无水乙醇、丙酮、乙酸乙酯、正己烷及N,N-二甲基甲酰胺(DMF)浸泡48h后,其对刚果红的截留率均>94%,通量恢复率达到78.1%,在连续24 h过滤刚果红甲醇溶液后,该膜的甲醇通量为14.13L/(m2·h),截留率为98.3%,表明TFN-U2膜具有良好的耐溶剂性、耐污染性以及一定的运行稳定性。 相似文献
3.
从制备方法、分离效果和分离机理等方面,简述了UiO-66(Zr)型改性膜在油水分离、染料去除、重金属离子去除和脱盐等领域中的应用,对UiO-66(Zr)型改性膜在水处理中的应用提出了展望。 相似文献
4.
5.
6.
采用静电诱导法,通过铸膜液中带负电的磺化聚醚砜(SPES)和凝固浴中带正电的聚乙烯亚胺(PEI)在相分离时形成的相互吸引作用,在聚醚砜(PES)膜表面形成聚电解质分离层,再经过交联处理和热处理制得聚醚砜复合纳滤膜。结果表明,当铸膜液中SPES/PES比例为4/17,凝固浴中加入的PEI分子量为10 000 g/mol时,所制得的纳滤膜在较低测试压力(0.3 MPa)下对硫酸镁(MgSO4)和硫酸钠(Na2SO4)的截留率分别为91.1%、85.7%,对其溶液的渗透性能分别为71.4 L/(m2·h·MPa)、75.9 L/(m2·h·MPa)。 相似文献
7.
8.
9.
以海藻酸钠(ALG)和羧甲基纤维素钠(CMC)共混液为活性层铸膜液,聚砜(PSF)超滤膜为基膜,环氧氯丙烷(ECH)的乙醇溶液为交联剂,采用涂敷和交联的方法制得一种新型复合纳滤膜,利用红外光谱仪、扫描电子显微镜、原子力显微镜和接触角测量仪等检测手段对复合膜进行了结构和性能的表征。结果表明,在1.0 MPa压力和30 L?h-1料液流量操作条件下,该复合纳滤膜对1000 mg?L-1 Na2SO4溶液的截留率为97.1%,通量17.3 L?m-2?h-1。以ALG和CMC共混液制备的复合纳滤膜比单一材料膜有更致密的膜面结构,截留率更高。该纳滤膜对不同无机盐的截留性能不同,表现出荷负电膜截留性能,这主要决定于荷电膜与电解质离子之间的静电作用力。 相似文献
10.
采用静电喷雾技术,以聚乳酸(PLA)为骨架载体材料,布洛芬(IBU)为模型药物,成功制备出PLA载IBU微球,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、傅里叶变换红外光谱仪(FTIR)、热失重分析仪(TG)和紫外可见分光光度计分析了微球形貌、结构和性能。结果表明,PLA/IBU微球呈表面多孔的无定形结构,分散性较好,IBU以分子或无规则状态负载在PLA中,化学结构未有变化,稳定性较纯IBU有所提高。在体外缓释测试中,PLA/IBU微球相比较纯IBU具有良好的缓释效果,随着投药量的增加,IBU的释放速率和累计释放量逐渐提高,含16 %IBU的PLA微球在48 h内累计释放量可达52 %。静电喷雾法制备的PLA/IBU微球有望提高IBU的生物利用度和溶出率,在生物医药领域具有潜在的应用前景。 相似文献
11.
NH2-MIL-125(Ti)具有较大的比表面积和孔隙率、均匀的孔道分布以及功能可调节性等优点,在光催化领域具有重要的应用前景,但同时也存在光生电子-空穴复合快和可见光利用率低等缺点。首先,介绍了钛酯的类型、反应物浓度、反应溶剂体积比和晶化时间对NH2-MIL-125(Ti)晶体形貌的影响;接着,总结了提高NH2-MIL-125(Ti)光催化活性的方法;然后,综述了国内外NH2-MIL-125(Ti)光催化剂的应用现状;最后,提出了NH2-MIL-125(Ti)光催化剂的发展方向。 相似文献
12.
13.
14.
新型季铵化壳聚糖/聚丙烯腈(PAN)复合纳滤膜的制备及其截留性能研究 总被引:6,自引:0,他引:6
以聚丙烯腈超滤膜为支撑底膜,2-羟丙基三甲基氯化铵壳聚糖水溶液为表面活性层的铸膜液,以丙三醇缩水甘油醚为交联剂,制备了季铵化壳聚糖/PAN荷正电复合纳滤膜,并确定了最佳的制膜条件.该复合膜很明显由两层组成,上层是较薄且致密的壳聚糖季铵盐表层,下层是非对称的多孔聚丙烯腈支撑层.复合膜的纯水渗透系数为16.6 L/(h·m2·MPa),对不同类型的无机盐呈现不同的截留规律.该膜对钙、镁高价阳离子有很高截留率,可望用于脱钙和镁及水的软化. 相似文献
15.
N,O-羧甲基壳聚糖/聚砜复合纳滤膜的制备及性能研究 总被引:1,自引:0,他引:1
以聚砜(PsF)超滤膜为基膜、N,O-羧甲基壳聚糖(NOCC)水溶液为活性层铸膜液、戊二醛(GA)为交联剂,采用涂敷和交联的方法制备了复合纳滤膜.测试了膜表面的流动电势(E)随操作压力(△P)的变化,实验结果表明在电解质溶液中,NOCC/PSF复合NF膜表面荷负电.对其结构和形貌进行了表征,并研究了有机小分子添加剂对复合膜截留性能的影响.NOCC/PSF复合NF膜对几种无机盐的截留顺序为Na2S04>NaCl>MgSOa>MgCl2,呈现出荷负电纳滤膜的截留特征. 相似文献
16.
17.
采用等温溶解平衡法研究303.15,323.15,333.15,343.15 K下三元体系NH4H2PO4-(NH2)2CO-H2O的固液相平衡关系,平衡固相组成采用湿渣法与X射线衍射法相结合的方法进行鉴定。结果表明:三元体系NH4H2PO4-(NH2)2CO-H2O在各个温度下均有1个共饱和点、2条单变量曲线、3个结晶区。运用Wilson模型和NRTL模型对研究体系进行关联计算,结果表明:NH4H2PO4-(NH2)2CO-H2O体系的Wilson模型关联值的RAD=2.68%,RMSD=0.11;NRTL模型关联值的RAD=1.78%,RMSD=0.71,溶解度理论计算值与实验值吻合良好。最后... 相似文献
18.
以聚乙烯亚胺(PEI)和单宁酸(TA)为水相单体、均苯三甲酰氯(TMC)为油相单体,通过界面聚合制备了复合纳滤膜,并对膜性能进行了表征和评价测试。结果表明,水相溶液TA、PEI的质量分数分别为0.3%、0.2%,水相pH为12,油相溶液TMC的质量浓度为0.2 g/L,反应时间为1 min,在60℃下烘干成膜为优化制备条件。此复合膜在温度为25℃、压力为0.5 MPa下得到的对4种无机盐截留顺序为Na_2SO_4MgSO_4MgCl_2NaCl,水通量MgCl_2NaClNa_2SO_4MgSO_4。该纳滤膜具有良好的SO_4~(2-)和Cl~-的分离效果。同时,该纳滤膜具有良好的耐污染性能,对腐殖酸和牛血清蛋白的24 h抗污染测试,水通量仍达到初始水通量的84.2%以上。 相似文献
19.
《应用化工》2016,(3):397-401
采用界面聚合和层层自组装法制备了具有双层分离层的聚酰胺/ZIF-8复合纳滤膜,并研究了界面聚合条件和ZIF-8自组装时间、层数对膜结构以及膜纳滤性能的影响。结果表明,具有磺酸基的界面聚合层和ZIF-8层通过配位键的化学作用具有很好的结合性。相对于只有一层分离层的聚酰胺膜,组装ZIF-8层后膜对甲基蓝的截留率有了明显提升;并且随着组装层数的增加,膜致密度增加,对于甲基蓝的截留率升高,但是通量有所下降。当ZIF-8层组装层数为2层时得到的复合纳滤膜,在0.5 MPa压力下,对于100 mg/L的甲基蓝溶液的通量为25.3 L/(m2·h),截留率达到96.5%,且分离性能保持稳定。 相似文献
20.
戊二醛交联的壳聚糖硫酸酯/聚砜复合纳滤膜的制备及截留特性 总被引:3,自引:0,他引:3
采用均相合成的方法制备了一种典型的两性聚电解质--壳聚糖硫酸酯(SCS).以SCS的水溶液为复合纳滤膜活性层铸膜液,戊二醛为交联剂,聚砜超滤膜为基膜,采用涂敷与交联的方法制备了壳聚糖硫酸酯/聚砜(SCS / PSF)复合纳滤膜,采用环境扫描电镜(ESEM)对其表面和断面结构进行了表征, 并研究了活性层铸膜液的组成及制备条件对复合膜截留性能的影响.所制得的复合NF膜在13~15℃、0.30 Mpa下,对1000 mg·L-1Na2SO4和NaCl 溶液的截留率分别为91.2%、48.5%,通量分别为3.2、6.7 kg·m-2·h-1.SCS/PSF 系列复合膜对无机盐的截留顺序为: Na2SO4 > NaCl > MgSO4 > MgCl2.实验结果表明SCS/PSF复合膜表面活性层因吸附电解质溶液中的阴离子而荷负电,并由此决定其对无机盐的截留性能. 相似文献