首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究天然气管道泄漏扩散规律可以为天然气管道泄漏事故的预防和补救提供有效的解决办法。在泄漏扩散规律的研究中,借助于计算机的CFD(Computional Fluid Dynamics)仿真技术不需要花费太大人力物力,且操作实施灵活方便,但由于CFD软件种类繁多,选取高效、准确的仿真软件显得尤为重要。为选取CFD仿真软件,对不同软件进行了对比分析,优选出了Fluent和CFX仿真软件,并给出了仿真案例。  相似文献   

2.
天然气管道气体泄漏扩散过程研究   总被引:4,自引:1,他引:3  
天然气管道发生气体泄漏将造成一定的危险范围。通过对泄漏气体扩散边界的研究,可确定泄漏气体扩散形成的危险域。研究得到,提高风速或气体泄放速度均会加大气体扩散速度,而使沿下风向的扩散浓度减小。将风速和气体泄放速度分别提高20%,风速对气体扩散速度的影响较大,而泄放速度对气体扩散浓度的影响较大。风速加大,泄漏危险域减小;风速减小,气体受浮力作用较明显,泄漏危险域变大。该研究成果可对泄漏气体扩散的危险域进行有效预测,有助于预防泄漏重大事故的发生。  相似文献   

3.
城市埋地天然气管道泄漏扩散数值模拟   总被引:2,自引:2,他引:0  
针对城市埋地天然气管道穿孔泄漏扩散问题,结合有限容积法,利用Gambit 2.4建立了天然气管道不同泄漏位置的CFD仿真模型,利用Fluent 6.3分别对天然气管道上部、下部及背风侧3种泄漏工况下,气体在土壤中和空气中的扩散规律进行了数值模拟。研究结果表明,下部泄漏在土壤和空气中的危险范围最大,关闭泄漏管段两端阀门以后,气体扩散危害范围逐渐变小。研究结果为城市埋地天然气管道泄漏事故现场人员疏散及安全抢修提供了理论依据。  相似文献   

4.
为研究泄漏孔径、泄漏点水深以及外部风速对海底输气管道泄漏后果的影响,以某海底输气管道为研究对象,选取两种泄漏孔径,两种泄漏水深,9种风速进行泄漏扩散的模拟计算。计算包含泄漏模拟、气体水中扩散计算及气体在空气中扩散的CFD模拟。最终得到各泄漏工况条件下可燃气体云团体积及影响范围。通过对数据进行归纳分析,得到气云扩散及影响距离的变化规律。结果表明,泄漏速率和泄漏水深会影响海底管道泄漏后气体到达海面的气体释放面积和气体垂直流速,进而影响气云在海面的扩散后果,风速会影响气云扩散的范围和浓度分布。泄漏孔径、泄漏点水深以及外部风速是进行海底管道泄漏扩散分析的关键因素,需要在分析中进行系统性考虑以全面反映海底管道的风险水平。当前分析方法能够较全面地分析以上关键因素对后果的影响,为现场抢险、应急响应等提供判据和输入,有助于完善应急准备分析和制定更加有针对性的应急处置方案。   相似文献   

5.
埋地输气管道穿孔泄漏扩散浓度的数值模拟   总被引:1,自引:0,他引:1  
基于有限容积法,建立输气管道泄漏扩散模型。以天然气管道为例分析了管道穿孔泄漏的原因,并进行数值模拟,得出了不同时刻模拟区域内天然气云团的扩散特性,给出了不同时刻爆炸浓度范围。结果表明:埋地天然气管道泄漏后,随着扩散时间的增加,近地面附近区域受气体危险浓度作用时间较长,影响程度较大。该成果为管道安全抢修提供理论指导,也说明应用数值方法模拟埋地燃气管道泄漏扩散规律是可行的。  相似文献   

6.
天然气管线泄漏扩散及危害区域分析   总被引:10,自引:3,他引:10  
对天然气扩散浓度进行研究,可以解决泄漏气体沿地面扩散所形成的危险区域预测问题,为管道运行和抢修提供安全保障,对于输气管线的风险后果定量分析具有重要的意义。为此,考虑到天然气泄漏扩散的特殊性,选取高斯模型作为扩散危害基本模型,给出了非正常泄漏状态下模型的修正函数。结合3种典型的泄漏扩散事故情景,模拟分析了天然气职业接触浓度限值和爆炸上、下限浓度所对应的扩散距离和危害区域面积;此外还对比分析了风速、泄漏孔径及泄漏时间等因素对扩散危害面积的影响。算例结果表明,管道发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将不再存在。  相似文献   

7.
风力对天然气管道泄漏后扩散过程的影响研究   总被引:2,自引:2,他引:2  
天然气管道发生泄漏扩散是输气管道事故危害的根本原因,而风力是影响泄漏后天然气扩散过程的一个极为重要的因素,建立有风条件下天然气泄漏扩散的位移量计算模型是正确评估输气管道事故损失后果的关键技术之一。通过风速与风压关系的研究,确定了风速分布关系式;并结合管道泄漏扩散过程的特殊性,在考虑管道孔口泄漏过程的射流作用和膨胀效应,以及重力作用影响效果的基础上, 重点考虑了水平风速的影响,给出了在风力作用下泄漏后天然气团偏移量的计算公式,建立了三维空间内的位移量计算模型,并进行了实例计算。结果表明,风力的存在将加剧天然气的扩散,使泄漏的天然气团顺风向偏移,其偏移尺寸远大于其他两个方向,大大增加了天然气泄漏后的危害面积。  相似文献   

8.
为了揭示换气通风风速对天然气管舱泄漏扩散特性的影响,本文采用Realizable k-ε湍流模型和组分输运模型对地下综合管廊天然气管舱不通换气工况下的泄漏扩散过程进行数值模拟研究。结果表明:无风时,扩散过程主要受湍流涡对及舱顶反射作用,各泄漏工况下天然气向管舱两侧对称卷吸扩散,小孔泄漏管舱内甲烷浓度分布分层现象比大孔泄漏明显,可燃气体监测报警时间呈"V"型分布。有风时,上风向区域天然气浓度逐渐降低;下风向区域大涡团失稳分裂成小涡团,湍流强度增大,卷吸作用增强,天然气呈"蜗牛"状漂移扩散。风速逐渐增大时,报警时间与泄漏口至监测点的距离成线型增长关系;风速超过3.81m/s后,天然气泄漏后迅速与空气混合稀释,管舱内甲烷浓度均低于爆炸下限的20%,可燃气体监测报警器不再报警。  相似文献   

9.
针对埋地输气管道泄漏气体在土壤中的迁移过程,以FLUENT软件为平台,研究了泄漏气体在土壤中的对流扩散规律,得到泄漏后的气体会在管道泄漏口形成椭球形的高浓度区,以浓度差为主要推动力的横向扩散小于以压力差为主要推动力的纵向对流,该结论与全尺度试验结论吻合。以甲烷爆炸下限扩散半径与地面甲烷质量分数的变化为尺度,研究了土壤性质包括土壤孔隙率、土壤含水率、土壤密度对气体对流扩散行为的影响,得出土壤孔隙率才是影响气体对流扩散行为的重要因素。模拟所得结论为埋地管道泄漏风险评估、事故应急疏散、管道设计与施工等提供了参考。  相似文献   

10.
高压天然气管道破裂气体扩散规律模拟结果分析   总被引:1,自引:0,他引:1  
采用国际上著名的流动与传热商业软件Fluent5.4对高压天然气管道破裂时天然气的扩散规律进行了数值模拟, 所采用的数学模型为无化学反应的燃烧计算模型。模拟结果表明, 取 5 0%和 15%为甲烷的爆炸上、下限, 甲烷的危险范围在以泄漏点为中心, 半径 14 ~23 5m、宽度 9.5m的圆环区域内。  相似文献   

11.
气体泄漏扩散过程及影响因素研究   总被引:4,自引:3,他引:1  
气体的泄漏扩散是石油、化工企业的常见事故之一。对于易燃易爆气体,在泄漏和扩散的过程中,可能发生火灾甚至爆炸;而毒性气体的泄漏扩散则可能对人员造成伤害及带来环境污染等。研究气体泄漏扩散的规律及影响因素,对于安全管理、事故调查分析、工程设计、应急措施及风险评估具有重要的意义。以饱和丁烷为研究对象,运用DNV公司的PHAST软件,探讨了气相泄漏扩散规律,对影响气体扩散的风速、大气稳定度、地面粗糙度等因素进行了研究。研究结果为制定气相泄漏扩散的预防及管理措施提供了依据。  相似文献   

12.
采用管道将氢气从制氢厂输送至终端用户是氢能源运输的最好方式。挪威REINERTSEN公司进行了这项研究,用来评估在高压下将纯氢气或天然气/氢气混合物通过海底管道从陆上工厂输送至海上或海外终端用户的可行性。研究表明,高压下的氢对材料脆性和疲劳裂纹扩展有一定程度的不利影响,不利影响的程度与材料类型和焊接工艺有关,在设计和安装海底氢气输送管道或将现有天然气管道转换为氢气输送时,必须充分考虑高压氢气可能引起材料性能的变化和使用限制因素。建议建立疲劳寿命评估的相关数据库和评定试验规范,以便简化海底输氢管道的设计。  相似文献   

13.
《石油机械》2020,(5):58-64
现有文献对原油在海水中的泄漏扩散规律研究相对较少。为此,采用计算流体力学方法,建立VOF模型和多孔介质模型,研究了海水流速和油品泄漏速度对海底埋地原油管道泄漏扩散的影响。计算结果表明:随着海水流速增加,原油扩散至海面的横向扩散距离增加,扩散时间延长,海水流速大于1. 5 m/s时对原油在海水中的扩散影响显著,海水流速为0. 35 m/s时原油到达海面的横向扩散距离为12. 688 m;随泄漏速度增大,原油扩散至海面的时间缩短,与泄漏速度为2 m/s时相比,泄漏速度为8 m/s所用时间缩短约;原油在海泥中的扩散范围随着泄漏速度增加而增大,同一泄漏速度下随着泄漏时间延长,原油在海泥横向和纵向的扩散距离在增长到最大值后趋于稳定,原油在海泥中所受的横向阻力小于纵向阻力。研究结果可为准确预测海底埋地原油管道泄漏范围及制定应急抢险方案提供理论支撑。  相似文献   

14.
目的 隧道内埋地燃气管道发生泄漏后燃气易积聚达到最低爆炸极限浓度,产生爆炸危险,需要对管道泄漏后在土壤和空气环境中连续扩散的问题进行研究。方法 采用理论分析和数值模拟的方法,对土壤和空气区域中的燃气浓度进行同时连续的监测。结果 (1)小孔泄漏发生后10 min、20 min、30 min、40 min时刻甲烷体积分数值为0.05的等值线在土壤内的最大扩散半径分别为0.90 m、1.15 m、1.25 m和1.30 m,甲烷在土壤内的最大扩散半径在10~15 m之间;(2)泄漏发生约5 min后土壤内各点处甲烷浓度趋于稳定;(3)空气区域中甲烷体积分数随时间的变化分为快速增长、缓慢增长和稳定3个阶段,泄漏发生60 min后隧道顶部6 m长的区域处于爆炸极限浓度范围内。结论 隧道内埋地燃气管道发生泄漏后,燃气在土壤内扩散半径不超过15 m,相对封闭的隧道环境使得隧道顶部6 m区域处于爆炸极限浓度范围内,需加以防控。  相似文献   

15.
LNG泄漏扩散模拟研究   总被引:4,自引:0,他引:4  
为了准确描述环境因素对液化天然气(LNG)泄漏后扩散的影响,研究和比较了各种气体扩散模型,将板模型和高斯模型相结合建立液化天然气泄漏扩散模型;重点讨论了泄漏后蒸气扩散的运动规律及重要影响因素,结合大气湍流理论和气体运动状态方程对LNG蒸汽的重气扩散和被动扩散过程进行了详细论述。运用MicrosoftVisualBasic和MATLAB语言开发了液化天然气泄漏扩散模拟软件,通过模拟不同情况下LNG泄漏的危险性区域,分析了环境因素对LNG泄漏后果的影响。将模型计算结果进行了结果分析,总结了风速和大气稳定度相互作用对液化天然气泄漏的影响规律,为该类事故的风险定量计算提供了可借鉴的方法,可为有关部门制订和完善事故的应急救援措施和风险管理提供参考。  相似文献   

16.
主要介绍甲醇储罐泄漏扩散类型、高斯扩散模型、伤害模型,通过对甲醇储罐泄漏的事故后果进行数值模拟,确定甲醇储罐泄漏中毒时伤害区域、泄漏扩散到伤害区域所需的时间,以及在具有轻微中毒危害时,甲醇蒸汽所能扩散的最远距离。根据模拟得到的结果,提出甲醇储罐泄漏应急预案的改进和生产设施的配备。  相似文献   

17.
主要介绍甲醇储罐泄漏扩散类型、高斯扩散模型、伤害模型,通过对甲醇储罐泄漏的事故后果进行数值模拟,确定甲醇储罐泄漏中毒时伤害区域、泄漏扩散到伤害区域所需的时间,以及在具有轻微中毒危害时,甲醇蒸汽所能扩散的最远距离。根据模拟得到的结果,提出甲醇储罐泄漏应急预案的改进和生产设施的配备。  相似文献   

18.
气体扩散过程十分复杂,受诸多因素的影响。同时,含硫天然气的运输存在一定的安全风险,因此,研究含硫天然气管道破裂后硫化氢扩散的影响范围具有重要的意义。通过对不同长度的含硫天然气管道泄漏后硫化氢扩散影响范围的分析,得出硫化氢含量,风速、破裂面积以及地形地貌对事故后果的影响规律,以期为含硫天然气管道的安全标准提供参考。  相似文献   

19.
管道输送是CCUS技术中最为重要的一环,CO_2泄漏扩散的高浓度窒息性和少量毒性气体杂质是最重要的潜在危害,安全性是其重要指标。利用PHAST软件对CO_2及其杂质H_2S在多因素耦合作用下对管道泄漏扩散进行了模拟计算分析,得出最危险工况。并对CO_2管道输送的危险工况进行模拟计算分析,得出CO_2及H_2S气体扩散的最大安全距离,选定合适的截止阀间距。定量分析评价了CO_2管道输送的安全性,对CO_2输送管线标准的制定具有借鉴意义。  相似文献   

20.
随着天然气在能源、化工领域的重要性逐年增长,LNG泄漏造成的安全问题引发更多关注.现有研究显示,LNG泄漏会造成火灾爆炸、低温、窒息等多种危害,而其危害范围与LNG蒸汽的扩散行为直接相关.基于DNV PHAST和ANSYS FLUENT软件对LNG泄漏工况进行模拟,进一步探究LNG泄漏产生的爆炸危险区域、低温区域及窒息...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号