共查询到20条相似文献,搜索用时 10 毫秒
1.
Asurveyoffracturemechanicsliteraturere vealsthatresearchworkonrockfracturemechan icshasmainlyfocusedonModeⅠfracture (open ingmode) ,inparticular,onModeⅠfracturetoughnesstesting[1 2 ] .However,pre existingcracksinrockmaterialsordiscontinuitiesinrockmassesarese… 相似文献
2.
ModeⅡfracturetoughness,KⅡC,isanim portantandusefulparameterinrockengineeringsinceitrepresentstheresistanceofmaterialtocrackextension (propagation)byshearing .AnumberoftestingmethodshavebeenproposedbyresearcherstomeasureKⅡC,e .g .anti symmetricfour pointbend… 相似文献
3.
Dislocation distribution functions of the edges of mode Ⅲ propagation crack subjected to three types of loads were studied by the methods of the theory of complex variable functions,by which,the problems researched were facilely transformed into Riemann-Hilbert problems and Keldysh-Sedov mixed boundary value problems. Analytical solutions of stresses,displacement and dynamic stress intensity factor were obtained by the measures of the theory of self-similar functions and corresponding differential and integral operation. In terms of the relationship between dislocation distribution functions and displacements,analytical solutions of dislocation distribution functions were obttained,and variational rules of dislocation distribution functions were depicted. 相似文献
4.
Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain—time curve comprises three stages:the linear deformation stage,the micro-cracking stage ... 相似文献
5.
Taylor impact test on aluminum alloy 7A04-T6 presented in a previous study has been numerically evaluated using the finite element code ABAQUS/Explicit in this paper. The influence of fracture criterion in numerical simulations of the deformation and fracture behavior of Taylor rod has been studied. The following fracture criterions, included a modified version of Johnson-Cook, the Cockcroft-Latham(C-L), the constant fracture strain, the maximum shear stress and the maximum principle stress fracture models, have been used in this paper. Model constants for each criterion are calibrated from material tests. The modified version of Johnson-Cook fracture criterion with the stress triaxiality cut-off idea used can give good prediction to the Taylor impact fracture behavior. However, the C-L fracture criterion with only a constant required for calibrating by a simple test is found to give reasonable predictions. Unfortunately, the other three criteria are not able to repeat the experimentally obtained fracture behavior. The result indicates that the stress triaxiality cut-off idea is necessary to predict the Taylor impact fracture. 相似文献
6.
巴恒静 《武汉理工大学学报(材料科学英文版)》2009,(Z1):148-152
According to GBJ82-85 test method for frost resistance of concrete,four-point bending tests were used to examine the effects of mineral admixture(silica fume and fly ash)on fracture toughness,fracture energy and dynamic elastic modulus of concrete subjected to rapid freeze-thaw cycles The microstructure of the concrete was also analyzed.The results show that with the increase of the number of freeze-thaw cycles,the fracture toughness of concrete,and the loss of fracture energy as well as the l0ss of relative dynamic elastic modulus showed a downward trend.The air content of fresh concrete is the most important parameter to improve frost resistance of concrete There existed distinct difference for silica fume and fly ash to enhance fracture performance and microstructure of the concrete under freeze-thaw cycles.The l0ss of fracture energy and the loss of relative dynamic elastic modulus kept a good linear relationship. 相似文献
7.
Anti-plane punch-through shear test and anti-planefour-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode Ⅲ) loading. The tensile and shear stresses at the crack tip are calculated by finite element method. The results show that under Mode Ⅲ loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode Ⅰ instead of Mode Ⅲ fracture occurs in brittle rock under Mode Ⅲ loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form. 相似文献
8.
The purpose of the present study was to evaluate the effect of Al2O3 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of Al2O3 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen’s long axis is 90o and 60o. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment of Al2O3 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and α- Al2O3 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-Al2O3. ZrO2 containing 10% Al2O3 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shape design , and production process of all-ceramic crown and bridge. 相似文献
9.
Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens with and without holes were tested to study the effect of holes on the shear crack sub-critical propagation.Numerical and experimental results show that three independent variables of hole,the interval distance S,the distance between the center of hole and the crack tip L,and hole radius R,have different contribution to the ratio of stress intensity factor of the specimen with holes to that of the specimen without hole,KⅡ/KⅡ0.Increasing S and decreasing L and R will result in the decrease of KⅡ/KⅡ0 and help crack arrest.The weight relation of the independent variables for KⅡ/KⅡ0 is S>L>R.The specimen DH3 with the largest value of S and the smallest values of L and R has the longest sub-critical crack propagation time and the smallest sub-critical crack propagation rate.Adding two suitable holes symmetrically to the original crack plane in rock specimen is considered to be a potential method for crack arrest of rock. 相似文献
10.
In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock. 相似文献
11.
The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured. The fracture surfaces were examined by scanning electron microscopy (SEM). The results indicate that oxidation temperature has significant effects on the fracture toughness. Fracture toughness decreases with the increase of the weight loss. The SEM images reveal that the decrease of fracture toughness was mainly attributed to the oxidation of the interface in the composite. 相似文献
12.
ZHAO Shan Shan PEI Wei Hua ZHAO Hui WANG Yi Jun CHEN San Yuan CHEN Yuan Fang ZHANG He GUO Dong Mei GUI Qiang CHEN Hong Da 《中国科学:技术科学(英文版)》2015,(2):346-351
A novel linear microprobe array(LMPA)has been developed by a conventional microfabrication method from silicon.The LMPA leverages the properties of conventional microwire with additional features of naturally formed regular spacing.With the help of periodic microprobe arrays and double-side V-grooves fabricated in advance between each pair of the two microprobes’rear ends,the number of microprobe units for assembly in one array can be flexibly chosen by cleavage fracture from the LMPA.The fabrication method was demonstrated and the prototype device was assessed by electrochemical impedance spectroscopy(EIS)and in vivo test.The SNR of the spikes recorded was 6. 相似文献
13.
The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation(CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations; thus, to obtain full martensite, a higher cooling rate is needed; and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C. 相似文献
14.
朱荣 《武汉理工大学学报(材料科学英文版)》2012,27(5):821-824
Samples prepared from as-extruded magnesium alloy Mg-3%Al-1%Zn (AZ31) billets were utilized in low-cycle fatigue tests in order to investigate the frequency-dependent fatigue life. Fully reversed strain-controlled tension-compression fatigue tests were carried out at frequencies of 1 Hz and 10 Hz in air. The microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM).When the strain amplitude was lower than 0.2%, the fatigue life exhibited a positive correlation with loading frequency, and the activity of twinning was increased at 10 Hz. When the strain amplitude was higher than 0.2%, significant twinning was observed both at these two frequencies, and the fatigue life was found to be independent of frequency. The possible reasons for this frequency-related fatigue lifetime may be due to the dependence of twinning upon loading frequency and strain amplitude. 相似文献
15.
Mechanical and Microstructural Characteristics of Superplastic Al-4.42Mg Aluminum Alloy 总被引:1,自引:0,他引:1
Sha-Sha Zhao Rehan Qayyume Hao-Yan Diao Chao-Li M Xiao-Wei Wu Yong Wang 《哈尔滨工业大学学报(英文版)》2013,20(5):96-100
Abstract: The superplastic response of commercial 5083 alloy (Al-4. 42Mg) under uniaxial tension at strain rates ranging from 5 × 10-5 to 10-2s -1 in the temperature interval 400 -550℃ was systematically studied in this paper. The tension test was conducted on samples of rolling direction. The maximum elongation-to-failure of 486% was found at 500 % and strain rate of 10-4s-1. To identify the main characteristics of superplastic deformation and to determine the mechanism of superplastic deformation of the alloy, the microstructure and fracture of the alloy were analyzed as a function of strain, strain rate and temperature using optical microscopy (OM) and scanning electron microscopy (SEM), the apparent strain rate sensitivity exponent ma and the apparent activation energy Qa were also studied. Based on the fracture analysis and the calculated data of m and Qa, it is suggested that the dominant deformation mechanism in the present alloy is grain boundary sliding (GBS) during the best deformation condition. 相似文献
16.
A nonlinear robust trajectory tracking strategy for a gliding hypersonic vehicle with an aileron stuck at an unknown position is presented in this paper. First, the components of translational motion dynamics perpendicular to the velocity are derived, and then a guidance law based on a time-varying sliding mode method is used to realize trajectory tracking. Furthermore, the rotational equations of motion are separated into an actuated subsystem and an unactuated subsystem. And an adaptive time-varying sliding mode attitude controller is proposed based on the actuated subsystem to track the command attitude and the tracking performance and robustness are therefore enhanced. The proposed guidance law and attitude controller make the hypersonic vehicle fly along the reference trajectory even when the aileron is stuck at an unknown angle. Finally, a hypersonic benchmark platform is used to demonstrate the effectiveness of the proposed strategy. 相似文献
17.
Since composite sandwich structures are susceptible to low-velocity impact damage,a thorough characterization of the loading and damage process during impact is important.In the present paper,the low-velocity impact response of carbon fiber composites lattice structures is investigated by experimental and numerical methods.Impact tests on composite plates are performed using an instrumented drop-weight machine(Instron 9250HV)and a new damage mode is observed.A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine(VUMAT)to predict the peak loading and simulate the complicated damage problem.The numerical predictions are in good agreement with the experimental results. 相似文献
18.
The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/concrete interfacial debonding and concrete cracking.Three-point bending tests were carried out on the CFRP-strengthened cracked concrete beams with varying specimen depth and initial crack length.A straingauge method was developed to monitor the crack initiation and propagation in concrete,and the CFRP/concrete interfacial bonding behaviors,respectively.Clip gauges were used to measure crack mouth opening displacement (CMOD) and the deflection at midspan.Experimental results revealed that CFRP-strengthened specimen shows a higher load capacity under the same deformation level and a better inelastic deformation capacity compared with the unstrengthened one.For there are two manifest peak values in the obtained load versus displacement curve,the ductility of CFRP-strengthened concrete beams were investigated using index expressed as area ratio on the load versus displacement curve.The calculated results indicated that the contribution from CFRP sheet to the ductility improvement of specimen is notable when the deflection at midspan exceeded 10.5 times the first-crack deflection. 相似文献
19.
Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surface quality of hydropiercing holes. The results show the fracture burrs are not obvious punched by all the three punches. The collapse punched by the round punch is a little larger than the others. The fracture surface quality punched by the round punch is good with larger smooth zone and the interface between smooth zone and tear zone is even with large gradient. The size of the smooth zone is larger and the interface between smooth zone and tear zone is uneven with large gradient punched by the flat punch. The size of the smooth zone is smaller and the size of the tear zone increases from the first fractured to the last fractured punched by the inclined punch. 相似文献
20.
Based on analyzing the structure and working principle on electric vehicles(EVs)with dual motors coupled by planetary gears,the control strategy of mode switching was proposed.The power interruption problem on EVs with automatic mechanical transmission(AMT)shifting was resolved.Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor’s zero speed braking,control features of mode switching were introduced.The mode shifting between the main motor mode and dual motors coupled driving were studied.Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT.Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching.The power requirements of EVs were satisfied,too. 相似文献