首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is argued that F(R) modified gravity generically leads to high frequency curvature oscillations in astrophysical systems with rising mass/energy density. Potentially observational manifestations of such oscillations are discussed. In particular, gravitational repulsion in finite-size objects, forbidden in standard General Relativity, is shown to exist. Also an alternation of density perturbation evolution is found out. The latter is induced by excitation of a parametric resonance and by the so-called antifriction phenomenon. These new features could lead to strong reshaping of the usual Jeans instability.  相似文献   

2.
Some recent papers have claimed the existence of static, spherically symmetric wormhole solutions to gravitational field equations in the absence of ghost (or phantom) degrees of freedom. We show that in some such cases the solutions in question are actually not of wormhole nature while in cases where a wormhole is obtained, the effective gravitational constant G eff is negative in some region of space, i.e., the graviton becomes a ghost. In particular, it is confirmed that there are no vacuum wormhole solutions of the Brans-Dicke theory with zero potential and the coupling constant ω > −3/2, except for the case ω = 0; in the latter case, G eff < 0 in the region beyond the throat. The same is true for wormhole solutions of F(R) gravity: special wormhole solutions are only possible if F(R) contains an extremum at which G eff changes its sign.  相似文献   

3.
There is a conformal equivalence between power law f(R) theories and scalar field theories in which the scalar degree of freedom evolves under the action of an exponential potential function. In the scalar field representation, there is a strong coupling of the scalar field with the matter sector due to the conformal transformation. We use the chameleon mechanism to implement constraints on the potential function of the scalar field in order that the resulting model be in accord with Solar System experiments. Investigation of these constraints reveals that there may be no possibility to distinguish between a power law f(R) function and the usual Einstein-Hilbert Lagrangian density.  相似文献   

4.
The aim of this paper is to introduce the notion of states on R 0 algebras and investigate some of their properties. We prove that every R 0 algebra possesses at least one state. Moreover, we investigate states on weak R 0 algebras and give some examples to show that, in contrast to R 0 algebras, there exist weak R 0 algebras which have no states. We also derive the condition under which finite linearly ordered weak R 0 algebras have a state. This work is supported by NSFC (No.60605017).  相似文献   

5.
In this paper, we introduce the notions of interval valued -fuzzy filters and interval valued -fuzzy Boolean (implicative) filters in R 0-algebras and investigate some of their related properties. Some characterization theorems of these generalized fuzzy filters are derived. In particular, we prove that an interval valued fuzzy set F in R 0-algebras is an interval valued -fuzzy Boolean filter if and only if it is an interval valued -fuzzy implicative filter.  相似文献   

6.
Grover’s search algorithm can be applied to a wide range of problems; even problems not generally regarded as searching problems, can be reformulated to take advantage of quantum parallelism and entanglement, and lead to algorithms which show a square root speedup over their classical counterparts. In this paper, we discuss a systematic way to formulate such problems and give as an example a quantum scheduling algorithm for an R||Cmax problem. R||Cmax is representative for a class of scheduling problems whose goal is to find a schedule with the shortest completion time in an unrelated parallel machine environment. Given a deadline, or a range of deadlines, the algorithm presented in this paper allows us to determine if a solution to an R||Cmax problem with N jobs and M machines exists, and if so, it provides the schedule. The time complexity of the quantum scheduling algorithm is while the complexity of its classical counterpart is .  相似文献   

7.
In 2012, Lee et al. proposed an interpolation technique with neighboring pixels (INP) as the base to conceal secret information in predicted pixels. Their method can effectively predict the pixel between two neighboring pixels. However, the different lengths of secret messages caused great distortion when a large secret message was concealed in the predicted value. Therefore, the proposed scheme applies the center folding strategy to fold the secret message for reducing image distortion. Furthermore, the proposed scheme references the variance of the neighboring pixel to determine the length of the secret message for controlling image quality. The parameter pair (k, F 1) is used to categorize the variance and determine the size of the secret message hidden in each category. k is the total number of thresholds which computed based on the characteristics of each image for balancing hiding payload and image quality. F 1 is the length of the secret message for the smoothest area. The experimental results show that the embedding capacity of the proposed method is 1.5 bpp higher than that of existing methods. For the same hiding payload, the image quality of the proposed method is 1.6 dB higher than that of existing methods.  相似文献   

8.
The paper considers retrial queueing system M /M /1/ 0 with combined service discipline, namely, a customer from the orbit is serviced in its turn, but in case of a free channel an arrival from the original flow is serviced immediately. The author obtains the expressions for state probabilities as well as ergodicity conditions. The system is compared with the Lakatos-type system.  相似文献   

9.
We propose a non-iterative solution to the PnP problem—the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences—whose computational complexity grows linearly with n. This is in contrast to state-of-the-art methods that are O(n 5) or even O(n 8), without being more accurate. Our method is applicable for all n≥4 and handles properly both planar and non-planar configurations. Our central idea is to express the n 3D points as a weighted sum of four virtual control points. The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix and solving a small constant number of quadratic equations to pick the right weights. Furthermore, if maximal precision is required, the output of the closed-form solution can be used to initialize a Gauss-Newton scheme, which improves accuracy with negligible amount of additional time. The advantages of our method are demonstrated by thorough testing on both synthetic and real-data.  相似文献   

10.
We consider a multiline queueing system with joint or single queries. The number of queries in a connection is random and is not known when the connection is established. Queries arriving during each connection are described by the phase type input steam. Accepting a connection in the system is restricted by tokens. Connections arriving when no free tokens are present are refused. Single queries arrive without tokens. If the number of free slots in the system is not enough, the system is blocked.  相似文献   

11.
The corepresentation of a Sylow p-subgroup of a symmetric group in the form of generating relations is investigated, and a Sylow subgroup of a group , i.e., an n-fold wreath product of regular cyclic groups of prime order, that is isomorphic to the group of automorphisms of a spherically homogeneous root tree is also studied. Translated from Kibernetika i Sistemnyi Analiz, No. 1, pp. 27–41, January–February 2009.  相似文献   

12.
We study the physical behavior of the transition of a 5D perfect fluid universe from an early decelerating phase to the current accelerating phase in the framework of f(R, T) theory of gravity in the presence of domain walls. The fifth dimension is not observed because it is compact. To determine the solution of the field equations, we use the concept of a time-dependent deceleration parameter which yields the scale factor a(t) = sinh1/n(αt), where n and α are positive constants. For 0 < n ≤ 1, this generates a class of accelerating models, while for n > 1 the universe attains a phase transition from an early decelerating phase to the present accelerating phase, consistent with the recent observations. Some physical and geometric properties of the models are also discussed.  相似文献   

13.
A random order service M|M|1 queueing system is considered. A stochastic estimate for the asymptotic distribution of normalized maxima of waiting times and an estimate for the upper limit almost sure are obtained.  相似文献   

14.
Given a graph with a source and a sink node, the NP-hard maximum k-splittable s,t-flow (M k SF) problem is to find a flow of maximum value from s to t with a flow decomposition using at most k paths. The multicommodity variant of this problem is a natural generalization of disjoint paths and unsplittable flow problems. Constructing a k-splittable flow requires two interdepending decisions. One has to decide on k paths (routing) and on the flow values for the paths (packing). We give efficient algorithms for computing exact and approximate solutions by decoupling the two decisions into a first packing step and a second routing step. Usually the routing is considered before the packing. Our main contributions are as follows: (i) We show that for constant k a polynomial number of packing alternatives containing at least one packing used by an optimal M k SF solution can be constructed in polynomial time. If k is part of the input, we obtain a slightly weaker result. In this case we can guarantee that, for any fixed ε>0, the computed set of alternatives contains a packing used by a (1−ε)-approximate solution. The latter result is based on the observation that (1−ε)-approximate flows only require constantly many different flow values. We believe that this observation is of interest in its own right. (ii) Based on (i), we prove that, for constant k, the M k SF problem can be solved in polynomial time on graphs of bounded treewidth. If k is part of the input, this problem is still NP-hard and we present a polynomial time approximation scheme for it.  相似文献   

15.
We study the strategies in feature selection with sparse support vector machine (SVM). Recently, the socalled L p -SVM (0 < p < 1) has attracted much attention because it can encourage better sparsity than the widely used L 1-SVM. However, L p -SVM is a non-convex and non-Lipschitz optimization problem. Solving this problem numerically is challenging. In this paper, we reformulate the L p -SVM into an optimization model with linear objective function and smooth constraints (LOSC-SVM) so that it can be solved by numerical methods for smooth constrained optimization. Our numerical experiments on artificial datasets show that LOSC-SVM (0 < p < 1) can improve the classification performance in both feature selection and classification by choosing a suitable parameter p. We also apply it to some real-life datasets and experimental results show that it is superior to L 1-SVM.  相似文献   

16.
The question of the contemporary relevance of Heidegger’s reflections on technology to today’s advanced technology is here explored with reference to the notion of “entanglement” towards a review of Heidegger’s understanding of technology and media, including the entertainment industry and modern digital life. Heidegger’s reflections on Gelassenheit have been connected with the aesthetics of the tea ceremony, disputing the material aesthetics of porcelain versus plastic. Here by approaching the art of wabi-sabi as the art of Verfallenheit, I argue that Gelassenheit may be understood in these terms.  相似文献   

17.
Scheduling is one of the most successful application areas of constraint programming mainly thanks to special global constraints designed to model resource restrictions. Among these global constraints, edge-finding and not-first/not-last are the most popular filtering algorithms for unary resources. In this paper we introduce new O(n log n) versions of these two filtering algorithms and one more O(n log n) filtering algorithm called detectable precedences. These algorithms use a special data structures Θ-tree and Θ-Λ-tree. These data structures are especially designed for “what-if” reasoning about a set of activities so we also propose to use them for handling so called optional activities, i.e. activities which may or may not appear on the resource. In particular, we propose new O(n log n) variants of filtering algorithms which are able to handle optional activities: overload checking, detectable precedences and not-first/not-last.  相似文献   

18.
Recently, sparse subspace clustering, as a subspace learning technique, has been successfully applied to several computer vision applications, e.g. face clustering and motion segmentation. The main idea of sparse subspace clustering is to learn an effective sparse representation that are used to construct an affinity matrix for spectral clustering. While most of existing sparse subspace clustering algorithms and its extensions seek the forms of convex relaxation, the use of non-convex and non-smooth l q (0 < q < 1) norm has demonstrated better recovery performance. In this paper we propose an l q norm based Sparse Subspace Clustering method (lqSSC), which is motivated by the recent work that l q norm can enhance the sparsity and make better approximation to l 0 than l 1. However, the optimization of l q norm with multiple constraints is much difficult. To solve this non-convex problem, we make use of the Alternating Direction Method of Multipliers (ADMM) for solving the l q norm optimization, updating the variables in an alternating minimization way. ADMM splits the unconstrained optimization into multiple terms, such that the l q norm term can be solved via Smooth Iterative Reweighted Least Square (SIRLS), which converges with guarantee. Different from traditional IRLS algorithms, the proposed algorithm is based on gradient descent with adaptive weight, making it well suit for general sparse subspace clustering problem. Experiments on computer vision tasks (synthetic data, face clustering and motion segmentation) demonstrate that the proposed approach achieves considerable improvement of clustering accuracy than the convex based subspace clustering methods.  相似文献   

19.
In most of the auction systems the values of bids are known to the auctioneer. This allows him to manipulate the outcome of the auction. Hence, one might be interested in hiding these values. Some cryptographically secure protocols for electronic auctions have been presented in the last decade. Our work extends these protocols in several ways. On the basis of garbled circuits, i.e., encrypted circuits, we present protocols for sealed-bid auctions that fulfill the following requirements: 1) protocols are information-theoretically t-private for honest but curious parties; 2) the number of bits that can be learned by malicious adversaries is bounded by the output length of the auction; 3) the computational requirements for participating parties are very low: only random bit choices and bitwise computation of the XOR-function are necessary. Note that one can distinguish between the protocol that generates a garbled circuit for an auction and the protocol to evaluate the auction. In this paper we address both problems. We will present a t-private protocol for the construction of a garbled circuit that reaches the lower bound of 2t + 1 parties, and Finally, we address the problem of bid changes in an auction. a more randomness efficient protocol for (t + 1)^2 parties  相似文献   

20.
We apply the formula for quadrupole gravitational loss of Einstein’s linearized theory to calculate the energy loss of an infalling pointlike mass into a black hole in the context of quadratic f(R) gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号