首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 420 毫秒
1.
在AZ31B镁合金中添加0.8%的稀土元素Nd,应用Gleeble-1500D热/力学模拟试验机,在不同变形温度、不同应变速率下对AZ31B-0.8Nd镁合金的流变应力进行了研究。结果表明,镁合金在等温压缩变形过程中,变形温度和应变速率对流变应力和组织有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,变形温度在350~400℃,应变速率为0.1s^-1条件下合金的组织细小均匀。  相似文献   

2.
选择MB2变形镁合金,采用Gleeble1500热力模拟机对其在不同温度和变形速率下的流变应力进行了实验研究,结果表明镁合金进行等温压缩的情况下,变形温度和应变速率对流变应力有显著的影响,流变应力随应变速率的升高和变形温度的降低而升高。并建立了流变应力的数学模型,其结果可为变形镁合金的塑性成形工艺的制订提供更为科学的依据。  相似文献   

3.
镁合金AZ31轧制板材的单向拉伸行为   总被引:1,自引:0,他引:1  
通过单向拉伸试验研究了AZ31镁合金轧制板在不同温度和应变速率下的力学性能。根据镁合金在50℃~400℃范围内的单向拉伸曲线分析结果,找出AZ31镁合金的抗拉强度、伸长率随变形温度、变形速度的变化规律。结果表明:AZ31镁合金轧制板的塑性随着应变速率的降低有明显提高;温度的升高可明显改善轧制板的塑性;当应变速率为1.5×10-2s-1、温度为400℃时,伸长率达到123.9%。  相似文献   

4.
镁合金在热加工过程中的变形机制复杂,且容易受到材料初始工艺状态和变形条件影响,因此呈现出不同的应力应变关系。采用铸态和变形态的AZ31B作为研究对象,通过Gleeble-1500获取坯料的应力应变曲线随温度和应变率的变化关系,基于Arrhenius双曲正弦型函数构建2种不同工艺状态下镁合金的本构模型,分析初始加工状态对镁合金应力应变关系及变形机制的影响。结果表明:当应变速率大于0.1 s-1,变形态镁合金在低温下由于变形织构及大量孪生产生而出现45°剪切断裂;在高温和低应变速率下2种工艺状态的镁合金变形机制相同,应力应变曲线基本相似;变形态镁合金的硬化指数n及变形激活能Q相比铸态镁合金更低。  相似文献   

5.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

6.
用热模拟实验机对AZ61镁合金在变形温度为150℃~400℃,应变速率为0.01s-1~10s-1的条件下进行压缩变形,研究不同变形条件下AZ61镁合金的力学响应。结果表明,AZ61镁合金压缩变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且应力峰降低;随变形速率增加,发生再结晶转变的临界应变增大。相比之下,变形温度对AZ61合金力学行为的影响要大于应变速率的影响。  相似文献   

7.
镁合金在热加工过程中的变形机制复杂,且容易受到材料初始工艺状态和变形条件影响,因此呈现出不同的应力应变关系。采用铸态和变形态的AZ31B作为研究对象,通过Gleeble-1500获取坯料的应力应变曲线随温度和应变率的变化关系,基于Arrhenius双曲正弦型函数构建两种不同工艺状态下镁合金的本构模型,分析初始加工状态对镁合金应力应变关系及变形机制的影响。实验结果表明:当应变速率大于0.1s-1,变形态镁合金在低温下由于变形织构及大量孪生产生而出现45°剪切断裂;在高温和低应变速率下两种工艺状态的镁合金变形机制相同,应力应变曲线基本相似;变形态镁合金的硬化指数n及变形激活能Q相比铸态镁合金更低。  相似文献   

8.
通过Gleeble热模拟机,在变形温度250~500℃、应变速率0.005~5 s-1下对挤压态镁合金进行热压缩实验,得到应力-应变曲线,基于加工硬化与软化机制,分析了温度和应变速率对流变曲线及峰值应力的影响。其次,考虑变形中温升,在高应变速率下采用温度补偿修正流变应力。最后,运用双曲正弦模型构建不同流变应力范围的本构模型,得到流变应力与温度、应变速率和应变的定量关系。将模型预测应力值与实验值进行对比。结果表明:实验值与预测值的相关性系数为0.984,平均相对误差绝对值为3.87%,说明所建立的本构模型能够准确预测成形过程中不同变形量下镁合金的流变应力值。  相似文献   

9.
采用等温压缩实验获得了变形温度为200~400℃,应变速率为0.001~1 s-1的AZ80镁合金的流变应力曲线,考虑动态硬化及软化特性描述了AZ80镁合金热变形过程动态再结晶主导的软化行为.提出基于动态材料模型的应变速率敏感性指数表征动态再结晶引起的能量耗散,该指数通过引入动态再结晶体积分数描述微观组织演化的耗散功.考虑变形温度和应变速率构建了不同应变的应变速率敏感性指数图,实现应变速率敏感性指数对动态再结晶软化行为的量化表征.在此基础上,研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响,重点分析了不同应变的应变速率敏感性指数图特征.结果表明:随着变形温度的升高和应变速率的降低,动态再结晶软化临界应变减小,动态再结晶体积分数增加;应变速率敏感性指数与动态再结晶体积分数正相关,指数大于0.21的区域对应着高动态再结晶体积分数,且均位于低应变速率下,并通过动态再结晶软化的微观组织进行了验证.  相似文献   

10.
AZ31B镁合金铸轧板温热拉伸流变行为研究   总被引:2,自引:2,他引:0  
由于短流程、低能耗的铸轧镁合金板材生产技术的突破,镁合金铸轧产品深加工必将成为镁合金材料应用的一个新的重要趋势。为研究AZ31铸轧镁合金板材的成形性能,通过温热力学拉伸试验得到了在应变速率为0.001~1.000s-1,变形温度为473~623K条件下的力学性能。研究发现,铸轧镁合金在变形温度为573~623K高温区,低应变速率时流变应力呈幂指数关系;而在变形温度低于573K,高应变速率时流变应力呈指数关系。微观组织分析发现,变形过程中发生动态再结晶,且晶粒尺寸随变形温度的升高而减小。  相似文献   

11.
In hot-compression process, the various factors have obvious effects on the deformation behavior of AZ31 magnesium alloy deformation behavior. To understand the hot-compression constitutive relation thoroughly, the stress-strain behavior of AZ31 magnesium alloy at various strain rates and different deformation temperatures were investigated under maximum strain of 60%. The microstructure of the experimental alloy was studied in the hot-compression procedure. The experimental results show that the relation of peak flow stress, strain rate and temperature can be described by Z parameter which contains Arrheniues item. The strain rate and the deformation temperature are the key parameters affecting deformation activation energy.  相似文献   

12.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

13.
AZ31镁合金热变形流动应力预测模型   总被引:1,自引:0,他引:1  
采用近等温单轴压缩实验获得了AZ3l镁合金变形温度为523 723 K,应变速率为0.01—10 s-1条件下的流动应力,分析了变形温度和应变速率对流动应力的影响规律.结果表明,AZ31镁合金变形过程中发生了动态再结晶,523 K时形成细小组织;而723 K时动态再结晶和长大的晶粒沿径向拉长.考虑实验过程塑性变形功和摩擦功引起的温度升高,在高应变速率条件下采用温度补偿修正了流动应力.在此基础上,建立了基于双曲正弦模型的峰值流动应力和统一本构关系,该模型利用材料参数耦合应变来描述流动应力的应变敏感性,进一步获得了合金热变形过程中流动应力与变形温度、应变速率和应变的定量关系.采用该本构关系模型预测流动应力具有较高的精度,预测值与实测值相关系数为0.976,平均相对误差为5.07%,实验条件范围内预测的流动应力与实验值几乎能保持一致.  相似文献   

14.
在温度为400℃~450℃、应变速率为0.01s-1~50s-1变形条件下,研究了AZ80镁合金的塑性变形行为,讨论了变形温度及应变速率对该合金热变形行为的影响,分析了该合金管材等温挤压的有限元模拟。研究发现,AZ80镁合金晶粒大小随温度的升高而增大,随应变速率的升高而减小;在高温变形时,发生连续动态再结晶,再结晶组织相对较均匀;通过调整挤压速度2mm/s~1mm/s,使该合金挤压出口温度维持在400℃~430℃较小范围内波动,从而保证制品的组织性能和尺寸精度的稳定。  相似文献   

15.
在变形温度为300~450 oC、应变速率为0.01~1 s-1的条件下进行热压缩试验,对Mg-5Y-0.5Ce-0.5Zr镁合金的热变形行为进行了研究。结果表明,在热压缩变形过程中,该合金的流变应力随着变形温度和应变速率的变化而变化。在同一应变速率下,流变应力随着变形温度的增高而降低;在同一变形温度下,流变应力随着应变速率的减小而减小。该合金热压缩流变应力的本构方程可采用双曲正弦形式构建,热变形激活能Q为253 kJ/mol。  相似文献   

16.
The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed using a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, strain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true strain predicted that lower deformation temperature and higher strain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s−1) is appropriate.  相似文献   

17.
As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s(-1) of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号