首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Woven geotextiles have been widely used in soil infrastructures for the reinforcement purpose. The hydraulic properties of a woven geotextile are not major reinforcement design parameters and the water retention capability of a woven geotextile is often ignored. The traditional testing techniques were designed for soils or nonwoven geotextiles, but not for woven geotextiles. Nowadays, a new type of woven geotextile with wicking fibers was developed which could be used for both drainage and reinforcement purposes. However, there are no proper testing techniques to determine the full-range water retention curve (WRC) for a woven geotextile, let alone for the wicking geotextile.This paper aimed at proposing a proper testing technique to determining the full-range WRC for the wicking geotextile and to compare the water retention capability of wicking and non-wicking geotextiles. Firstly, the traditional testing techniques were re-examined to check the suitability for characterizing the WRCs of woven geotextiles whose pore size distributions were anisotropic. Secondly, a proper testing technique was proposed and the WRCs of different types of woven geotextiles were determined. Thirdly, the WRCs of wicking and non-wicking geotextiles were compared to demonstrate the advantages of the wicking geotextile to hold and transport water under unsaturated conditions. Finally, the effect of wicking fiber on the water retention capability of the wicking geotextile was quantified.  相似文献   

2.
Wicking geotextile has been increasingly utilized in field projects to mitigate water-related roadway problems. The previous studies showed that the wicking geotextile could provide mechanical stabilization, serve as capillary barrier, and enhance lateral drainage. The wicking geotextile differentiates itself from non-wicking geotextiles by providing capillary or wicking drainage in unsaturated conditions, whereas non-wicking geotextiles only provide gravitational drainage under saturated or near-saturated conditions. Although the previous studies have demonstrated the benefits of soil water content reduction by the wicking drainage, it is not well understood how the wicking geotextile stabilization improves overall performance of aggregate bases over subgrade under traffic or cyclic loading. This paper presents an experimental study where large-scale cyclic plate loading tests were conducted under different conditions: (1) non-stabilized base, (2) non-wicking geotextile-stabilized base, and (3) wicking geotextile-stabilized base, over soft and moderate subgrades. Rainfall simulation was carried out for each test section. After each rainfall simulation, a drainage period was designed to allow water to drain from the section. The amounts of water applied and exiting from the test section were recorded and are compared. Cyclic loading was applied after each drainage period. The test results show that the combined hydraulic and mechanical stabilization effect by the wicking geotextile reduced the permanent deformation of the aggregate base over the subgrade as compared with the non-stabilized and non-wicking geotextile-stabilized sections.  相似文献   

3.
Geotextiles are routinely used in separation and filtration applications. Design of these systems is currently based on saturated properties of the geotextiles and the surrounding soils. However, in the field, soil and geotextile can be in an unsaturated state for much of their design life during which they are essentially hydraulically non-conductive. Periodic wetting and drying cycles can result in rapid and large changes in hydraulic performance of soil–geotextile systems. The writers have reported the results from physical water infiltration tests on sand columns with and without a geotextile inclusion. The geotextile inclusions were installed in new and modified states to simulate the influence of clogging due to fines and to broaden the range of hydraulic properties of the geotextiles in the physical tests. This paper reports the results of numerical simulations that were undertaken to reproduce the physical tests and strategies adopted to adjust soil and geotextile properties from independent laboratory tests to improve the agreement between numerical and physical test results. For example the paper shows that the hydraulic conductivity function of the geotextile must be reduced by up to two orders of magnitude to give acceptable agreement. The lower hydraulic conductivity is believed to be due to soil intrusion that is not captured in conventional laboratory permeability tests. The calibrated numerical model is used to investigate the influence of geotextile and soil hydraulic conductivity and thickness as well as height of ponded water at the surface on wetting front advance below the geotextile and potential ponding of water above the geotextile due to a capillary break mechanism. A simple analytical model is also developed that predicts the maximum ponding height of water above the geotextile based on two-layer saturated media and 1-D steady state flow assumptions. The analytical model is used to generate a design chart to select geotextiles to minimize potential ponding of water above the geotextile. Ponding can lead to lateral flow of water along the geotextile in reinforced wall, slope, embankment and road base applications.  相似文献   

4.
It should be noted that the drainage conditions and mechanisms are somewhat different when geotextiles are used as back fill material behind retaining walls. One of the major differences is that the soil installed by the geotextile may not necessaroly be saturated. Generally, the drainage performance of geotextiles can be evaluated by examining combined behavior of geotextiles, soil particles and water. However, in addition to the above materials, in investigating the drainage performance of geotextiles as back fill material behind retaining walls, the effect of air should be taken into account. Therefore, this study has concentrated on investigating the effect of drainage performance of an initially dry geotextile. A further long-term test was carried out primarily to examine the mechanism and development of self-induced filters, which is believed to determine the drainage performance of the geotextile.  相似文献   

5.
Woven geotextiles are often to be used in roadways for reinforcement purposes due to their higher tensile strengths. In the design of a woven geotextile for practical applications, the focus is mainly put on its reinforcing effect, while its hydraulic behaviors are not major design parameters and the influence of hydraulic properties on the reinforcing effect is often ignored. However, woven geotextiles are predominantly made of polypropylene and polyester, which are hydrophobic. This characteristic can result in a capillary break effect which it is equivalent to raise the ground water table to the location where the geotextile is installed. Numerous researchers have reported that the moisture storage from a capillary break effect can be detrimental to the long-term performance of a pavement structure. Until now, no method is available to effectively resolve this issue.Recently a new type of wicking geotextile is produced which has the capability to laterally drain excess water in a roadway under both saturated and unsaturated conditions. Several field applications demonstrated its potential in improving pavement performance. This paper attempted to investigate the working mechanism of the wicking geotextile through numerical studies and quantify the benefits of the wicking geotextile in term of drainage performance in a pavement structure. A numerical model was developed and validated using column test results from existing literature. After that the drainage performance of the wicking geotextile under different working conditions was simulated and evaluated.  相似文献   

6.
Geotextiles have been used for drainage purposes in pavements for many years. To drain water out of road sections, the geotextiles need to get wet first. In this study, the wettability of three different types of geotextiles, namely wicking woven (WW) geotextile, non-wicking woven (NWW) geotextile, and nonwoven (NW) geotextile, was investigated in terms of their contact angles dependent on water-geotextile interaction. Contact angle was observed by the VCA Optima XE tensiometer for up to 12 s after a water droplet was dropped at the center of a geotextile's surface. Water droplets of two different sizes (2 μL and 5 μL) were used to demonstrate the droplet size effect on the contact angles of water on undisturbed geotextiles. Test results show that the contact angle decreased to smaller than 90° and the droplet disappeared on the wicking woven geotextile within a few seconds after water dropping, while the contact angle remained larger than or approximately equal to 90° on the other two types of geotextiles within the observation period. This comparison indicates that water penetrated faster into the wicking woven geotextile than other geotextiles. Furthermore, this study investigated the effects of soil particle intrusion and geotextile or fiber deep groove flattening associated with compaction on the wettability of geotextiles.  相似文献   

7.
Geotextiles are often subject to different load types in their filtration applications. The load action can cause changes in soil density, geotextile stretching and flow interaction at the soil-geotextile interface. All of these load-induced changes to a geotextile may affect the filtration behaviour of the soil-geotextile system. The impact of load type on the filtration behaviour of soil-nonwoven geotextile combinations has been studied through a series of tests using an experimental apparatus designed specially for the laboratory tests. In these tests, the soil-geotextile combination was fabricated by inserting a piece of nonwoven geotextile between a 50 mm thick soil layer and a layer of steel beads. Two chemical-bonded nonwoven geotextiles were employed in this study. One of the three load types, namely sustained, pulsatory and a combination of both was applied to the combination prior to each filtration test. The frequency of the pulsatory load was 0.1 Hz and a total of 5000 cycles of repeated load applied to the combination for each load type test. After applying this specific type of load on a soil-geotextile combination, water was allowed to flow down through the combination from the soil into a drainage layer set at various hydraulic gradients. The flow rates corresponding to elapsed times were measured and the average hydraulic conductivity value was extracted by using Darcy’s law to characterize the filtration performance of the entire soil-geotextile combination. Variations in the average hydraulic conductivity value with respect to the soil void ratio, magnitude and type of normal load were examined.The experimental results revealed that the void ratio of soil decreased with the increase of total load. Although two parent geotextiles under study, namely GT1 and GT2, have similar filtration characteristics, soil-geotextile combinations composed of these two geotextiles exhibited different filtration responses to the normal load. Soil-GT1 combinations exhibited a normal relationship between the average hydraulic conductivity and the normal load applied; the average hydraulic conductivity increased with an increase in the total load. Soil-GT2 combinations exhibited different load-dependent responses to a normal load with the average hydraulic conductivity depending on the magnitude and type of load. Such load-dependent hydraulic conductivity changes are attributed mainly to the geotextile in-plane strain and the pumping action in the combination.  相似文献   

8.
Nonwoven geotextiles have been commonly used in filtration and drainage of geotechnical engineering works. This paper presents a study on the use of such materials in drainage and filtration systems of tailings dams. Different combinations of tailings and geotextiles were submitted to gradient ratio (GR) tests under confinement in the laboratory with varying values of stress levels and hydraulic gradients. The results of GR tests under confining stresses up to 2000 kPa are presented and discussed. The dimensions of the tailings particles entrapped in the geotextile specimens and those that piped through the geotextile were also assessed. Geotextile specimens from the drainage system of a tailings dam were exhumed for analyses, as part of the research programme. The results obtained showed that stress levels and the hydraulic gradients used in the tests influenced the behaviour of the system. Physical and microscopic analyses of the specimens tested showed greater geotextile impregnation by tailings particles in the field than in the laboratory. The overall performance of the geotextiles tested under laboratory conditions was satisfactory. However, in the field segregation of tailings particles and transport of fines in suspension can subject the filter to more complex and severe clogging mechanisms, not properly simulated in current standard testing procedures.  相似文献   

9.
为了掌握堆浸铀矿堆非抱和区的水力学特性,根据多孔介质的液体流动控制方程和描述水力学性质的van Genuchten模型,阐述了堆浸铀矿堆水力学特征参数的数值反演模型。接着,选用来自某铀矿山新堆浸场分形维数D=1.8的铀矿石样,利用自制的一维液体非饱和渗流试验装置,测定了不同喷淋强度下试验柱底部的累计排水量和5个不同高度矿样内的含水率。最后,利用HYDRUS-1D软件获得了试验样本在注水期间和排水期间的水力学特征参数。结果表明:①数值反演方法确定的水力学特征参数能很好地与实际情况相匹配,参数估算结果可用于工程实际;②注水期间和排水期间需要分别确定对应的水力学特征参数;③注水期间反演估算获得的堆浸铀矿堆饱和渗透系数比排水期间的更接近饱和渗流试验获得的结果。  相似文献   

10.
城市快速路盲沟排水系统水力模型研究   总被引:1,自引:0,他引:1  
为推求降雨过程中盲沟内流量及水深变化过程,以指导盲沟系统的设计与布置,在研究土壤非饱和下渗和碎石中水流运动规律的基础上,建立了城市快速路盲沟系统水力模型,包括雨水下渗和盲沟汇流两部分。前者采用vanGenuchten模型表征土壤水分持留曲线,借助非饱和渗流模拟软件VS2DTI求解;后者采用碎石中水流运动方程,通过Preissmann格式差分求解。  相似文献   

11.
《Urban Water Journal》2013,10(7):559-569
This study investigated the application of geotextiles as sustainable urban drainage systems for degradation of organic pollutant load present in stormwater. Three experimental granular filter rigs were used, packed with alternating layers made up of gravel, pea gravel, sand and either an upper layer, an upper and lower layer or no layer of geotextile. The hydraulic loading capacity matched that commonly used on conventional sand filters. Standard water quality parameters were measured and collated data was evaluated using an ANOVA and Levine's test of homogeneity of variance procedure. It was found that the rig with both upper and lower geotextiles had a statistically significant difference in data from the rig with only a single geotextile layer. High chemical oxygen demand (58–80%) and suspended solids (88–99.99%) removal rates occurred for all rigs. However, the control rig showed increased outflow concentration of nutrients indicating the potential of geotextiles for stormwater treatment.  相似文献   

12.
Fine fraction filtration test to assess geotextile filter performance   总被引:1,自引:0,他引:1  
The proper design of the openings of a geotextile filter requires a balance between providing upstream soil particle retention and avoiding excessive geotextile clogging. While this balance can be reasonably achieved quite well for most soil types and hydraulic conditions, it is different when the flowing liquid is turbid (containing a large amount of suspended particles) and/or under high, or dynamic, hydraulic gradients. This paper presents a test method to assess the behavior of individual soil particles in a slurry form as they approach, encounter and interact with a geotextile filter.

The paper describes the concept and details of the test method, called the fine fraction filtration (F3) test, and presents data on five different geotextiles which were evaluated using three different soil types. It was seen that soils with particle sizes larger than the geotextile's opening structure can build a stable upstream network; soil with particle sizes smaller than the geotextile's opening structure can pass through the geotextile; and intermediate particle size conditions can give rise to excessive clogging. An additional series of tests were conducted using the same five geotextile filters but now using a pre-placed upstream soil filter above the geotextiles. Clogging conditions generally occurred albeit within the soil column rather than within the geotextile.

The F3 test is felt to be a meaningful test for those conditions where the upstream soil particles are not in intimate contact with the geotextile filter. In such cases, the test method can probably be considered to be a performance test. For other, more typical soil placement conditions, the test method can be considered to be a very challenging indext test.  相似文献   


13.
Stone columns, which are frequently employed to stabilize the liquefiable soil, are susceptible to accumulation of soil particles. The progressive accumulation of the soil particles causes clogging of the stone column which decreases its drainage capacity. The stone column can be encased with geotextile to sustain its long term drainage function. The encasement prevents the movement of the soil particles into the stone pores. In the present paper, a mathematical model is presented to assess the filtration performance of the geotextile encasement to prevent the clogging. The filtration capacity of the geotextile is related to its maximum pore size, porosity and soil characteristics. It is observed that the encased stone column dissipates the excess pore pressure at a faster rate compared to the stone column without encasement. The peak maximum excess pore water pressure (Umax) is not significantly affected due to selection of the opening size of the geotextiles for single earthquake. However, the opening size can significantly affect the peak Umax value for multiple earthquakes. Depending on the capture coefficient of the stone column, the clogging can be fully prevented for higher hydraulic gradient if geotextile with maximum opening size in between D10 to D5 is used as encasement.  相似文献   

14.
吴纲  雷国辉  姜红 《岩土工程学报》2017,39(Z1):161-165
分别配制不同孔隙比的粉砂、标准砂和黏土试样,采用自主研制的一套多功能渗透试验装置,开展了一系列纯土和有纺土工织物覆土条件下的渗透试验,对比分析了这两种条件下渗透系数的差异,并探讨了有纺土工织物与土共同作用下的渗透机理。结果表明,有纺土工织物对于土体渗流略有一定的抑制作用,表现为覆土条件下的渗透系数略小于纯土的渗透系数,但是对于粉砂,当其孔隙比比较大、细砂颗粒的含量相对较多时,细砂颗粒则有可能在渗流作用下通过有纺土工织物孔隙而产生流失,使得覆粉砂条件下的渗透系数略大于纯粉砂的渗透系数。  相似文献   

15.
深圳河反滤土工布试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
对深圳河治理工程边坡防护反滤运行期的土工布进行了综合试验研究 ,分析了土工布长期运行过程中的渗透性、保土性和淤堵性能 ,从强度损失角度分析了土工布长期运行的强度衰减情况 ,并对土工布的耐久性进行了试验分析。由试验知 ,土工布渗透系数降低约 10 0倍左右 ,而土工布强度降低了 5 0 %左右 ,强度衰减速率小于 0 .2 6% /月。试验表明 ,土工布已进入稳定渗透期和强度的稳定衰减期 ,土工布满足防护反滤的要求  相似文献   

16.
The use of geotextiles as revetment filters comprised one of the earliest applications for these materials. In performing its role within the revetment structure the geotextile must meet specific mechanical and hydraulic criteria. The mechanical criteria presented in the paper are based on empirical relationships derived by correlating analysed in-situ performance with appropriate laboratory mechanical test methods. The hydraulic criteria presented in the paper rationalizes the plethora of published geotextile filter criteria, and consider such variables as geometric and hydrodynamic stability, mode of water movement through the geotextile filter, and type of foundation soil to be protected.  相似文献   

17.
A Jute-HDPE composite structured geotextile was developed to improve the performance of earthen structure of river embankment. The optimized geotextiles (430 g/m2) containing 86% natural component (on weight) having better physical, mechanical (tensile strength, 10 kN/m (machine direction) and 18 kN/m (cross direction), index puncture (163 kN) and CBR (1.5 kN)), hydraulic (AOS 178 μ) and endurance properties than 100% HDPE geotextiles. A coconut fibre geotextile net was placed over jute-polyolefin geotextiles to resist washing-off of loose cover soil until the establishment of vegetation. Placing of continuous seamless geotextile tube (weight 196.2 kg/m) filled with moist river sand at the anchor trench-cum-toe guard assisted in safeguarding from eddies. It was observed that initially closed structure of the geotextile assisted in efficient filtration leading to soil stabilization through compactness of soil layer (14 cm thick). The uniqueness of work lies in conversion of closed structure of geotextiles to open-mesh of HDPE slit film on degradation of jute, remained beneath the cover-soil, through which grass root penetrated the geotextiles sheet and riveted both the layers of soil, the cover and the compacted back layers. The remnant synthetic part thus acts as durable reinforcing element and its increased porosity provides breathability for growth of soil flora and fauna. Bermuda grass turf provided very high nailing strength (658.8 kN/m2) with the soil through intertwining of grass roots with durable synthetic network.  相似文献   

18.
Composite geotextiles with polyester yarn reinforcement have been commonly used in combination with unsaturated soils. Both unsaturated and saturated shear strength of the interfaces were investigated between a composite geotextile and three major types of materials: silty sand (SM), low-plasticity silt (ML) and high-plasticity clay (CH) in a direct shear box. The interfaces were formed using two methods (A and B) to reflect the wide range of possible contact conditions in practice. Method A involved statically compacting the soil directly on top of the composite geotextile, while for Method B, the soil was statically compacted in a separate mold and later brought into contact with the composite geotextile. Type B interfaces required a larger displacement to mobilize the shear strength than Type A interfaces. The ultimate failure envelopes of SM and ML soils were similar to those of their interface shearing. Notably, the failure envelopes for the clay-geotextile interface of both types were higher than that of clay alone. The unsaturated soil-only shearing had a higher peak strength and tended to dilate more than saturated soil-only shearing, while unsaturated soil-interface shearing appeared to be more contractant than saturated interface shearing. The strength variations with suction for all tested soils and interface shearing were clearly non-linear. A new model that takes account of the condition of soil-geotextile contact intimacy is proposed for predicting the variation of interface strength with suction, based on the variation of the soil's apparent cohesion with suction and the geotextile-water retention curve.  相似文献   

19.
A filter media satisfying the hydraulic conductivity requirements allows unimpeded seepage without generation of surplus pressure head and decrease of flow rate. This paper proposes design criteria for the hydraulic conductivity requirements of a filter based on governing flow equations. The results have shown that the hydraulic conductivity requirements of pressure head and flow rate are satisfied with a single condition of hydraulic conductivity of filter greater than or equal to the hydraulic conductivity of soil times the hydraulic gradient in soil. The proposed model is developed for saturated conditions and is also applicable for partially saturated conditions. The developed model is validated based on the experimental evaluations of sandy soil with three granular filters and two needle punched non-woven geotextile filters. The developed design criterion applies to internally stable soils with granular and geotextiles filters and offers an improvement in the standards and current design guidelines for protective filters.  相似文献   

20.
Commercial software is used widely in slope stability analyses of reinforced embankments. Almost all of these programs consider the tensile strength of geotextiles and soil–geotextile interface friction. However, currently available commercial software generally does not consider the drainage function of nonwoven geotextile reinforcement. In this paper, a reinforced channel embankment reinforced by a nonwoven geotextile is analyzed using two methods. The first method only considers the tensile strength and soil–geotextile interface friction. The second method also considers the drainage function. In both cases, the reinforced embankment is modeled in rapid drawdown condition since this is one of the most important conditions with regard to stability of channel embankments. It is shown that for this type of application, modeling a nonwoven geotextile reinforced embankment using commercial software which neglects the drainage function of the geotextile may be unrealistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号