首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti‐aliasing has recently been employed as a post‐processing step to adapt to the deferred shading technique in real‐time applications. Some of these existing algorithms store supersampling geometric information as geometric buffer (G‐buffer) to detect and alleviate sub‐pixel‐level aliasing artifacts. However, the anti‐aliasing filter based on sampled sub‐pixel geometries only may introduce unfaithful shading information to the sub‐pixel color in uniform‐geometry regions, and large G‐buffer will increase memory storage and fetch overheads. In this paper, we present a new Triangle‐based Geometry Anti‐Aliasing (TGAA) algorithm, to address these problems. The coverage triangle of each screen pixel is accessed, and then, the coverage information between the triangle and neighboring sub‐pixels is stored in a screen‐resolution bitmask, which allows the geometric information to be stored and accessed in an inexpensive manner. Using triangle‐based geometry, TGAA can exclude irrelevant neighboring shading samples and achieve faithful anti‐aliasing filtering. In addition, a morphological method of estimating the geometric edges in high‐frequency geometry is incorporated into the TGAA's anti‐aliasing filter to complement the algorithm. The implementation results demonstrate that the algorithm is efficient and scalable for generating high‐quality anti‐aliased images.  相似文献   

2.
Shadow maps sample scene visibility in the light source space and offer an efficient solution to generate hard shadows.However,they suffer from aliasing artifacts because of discretization errors,inadequate resolution and projection distortion.In this paper,we propose the shadow geometry map method,where a shadow depth map is augmented by storing geometry information about scenes.This leads to a new shadowrendering algorithm that combines a supersampling filter,a geometry-aware reconstruction kernel and an irregular sampling filter.Our method produces high quality alias-free and subpixel supersampling shadow rendering and retains the simplicity and the efficiency of shadow maps.We show that the algorithm pipeline is efficiently parallelized using current programmable graphics hardware and that our method is capable of generating high quality hard shadows.  相似文献   

3.
Rendering vector maps is a key challenge for high‐quality geographic visualization systems. In this paper, we present a novel approach to visualize vector maps over detailed terrain models in a pixel‐precise way. Our method proposes a deferred line rendering technique to display vector maps directly in a screen‐space shading stage over the 3D terrain visualization. Due to the absence of traditional geometric polygonal rendering, our algorithm is able to outperform conventional vector map rendering algorithms for geographic information systems, and supports advanced line anti‐aliasing as well as slope distortion correction. Furthermore, our deferred line rendering enables interactively customizable advanced vector styling methods as well as a tool for interactive pixel‐based editing operations.  相似文献   

4.
介绍了基于图像与几何空间的实时阴影绘制算法,使用shadow map处理非阴影边缘区域,使用shadow volume处理阴影边缘区域,既克服了shadow map容易出现的走样现象,在性能上又较shadow volume有了很大提高.在具体实现中,引入了计算掩码技术,以实现对阴影边缘区域的划分.  相似文献   

5.
方差阴影图中的光渗现象消除算法   总被引:3,自引:2,他引:1  
方差阴影图算法使用概率的方法计算像素被遮挡的上限概率,通过对深度图滤波的方法来有效地减少阴影图算法中的走样问题,但在深度比较复杂的场景中方差阴影图算法会出现光渗现象,即在应该是阴影的区域却有了亮度.文中使用最小-最大阴影图来辅助消除方差阴影图中的光渗现象,在对深度纹理进行滤波的同时生成一个最小-最大阴影图;在实时绘制场景时,利用最小-最大阴影图来辅助判断当前片元是否完全处在阴影区域内部,由此生成更真实、更准确的阴影.该算法可以很容易地添加到已有的方差阴影图算法的片元处理程序中,并且不会对原有阴影的柔和边界以及绘制的帧率产生影响.  相似文献   

6.
Penumbra masks     
Computation of physically-based shadows can be significantly accelerated by limiting computations into regions where penumbras appear. In this paper, we present a general penumbra detection method that efficiently bounds regions where penumbras occur in a shared projection plane of an area light source. We introduce a novel area filling operator, which allows effective and conservative area masking with respect to all viewpoints, i.e., sampling points within a planar polygonal light source. The area filling operator uses a point sprite rendering technique on a set of silhouette boundaries to create a penumbra mask, which is essentially a modified occlusion map. We show how to efficiently test the geometry and screen-space pixels against the penumbra mask. An important advantage of our method is that we can separate lit and umbra regions, and thus drive various soft shadow algorithms to focus their computational efforts into potential penumbras. Due to the relative simplicity of computations, penumbra masks can be efficiently generated with graphics hardware. As an example, we accelerate shadow map supersampling to demonstrate significant speedups that utilizations of penumbra masks provide.  相似文献   

7.
Procedural shaders are a vital part of modern rendering systems. Despite their prevalence, however, procedural shaders remain sensitive to aliasing any time they are sampled at a rate below the Nyquist limit. Antialiasing is typically achieved through numerical techniques like supersampling or precomputing integrals stored in mipmaps. This paper explores the problem of analytically computing a band‐limited version of a procedural shader as a continuous function of the sampling rate. There is currently no known way of analytically computing these integrals in general. We explore the conditions under which exact solutions are possible and develop several approximation strategies for when they are not. Compared to supersampling methods, our approach produces shaders that are less expensive to evaluate and closer to ground truth in many cases. Compared to mipmapping or precomputation, our approach produces shaders that support an arbitrary bandwidth parameter and require less storage. We evaluate our method on a range of spatially‐varying shader functions, automatically producing antialiased versions that have comparable error to 4×4 multisampling but can be over an order of magnitude faster. While not complete, our approach is a promising first step toward this challenging goal and indicates a number of interesting directions for future work.  相似文献   

8.
We introduce a new approach to three important problems in ray tracing: antialiasing, distributed light sources, and fuzzy reflections of lights and other surfaces. For antialiasing, our approach combines the quality of supersampling with the advantages of adaptive supersampling. In adaptive supersampling, the decision to partition a ray is taken in image-space , which means that small or thin objects may be missed entirely. This is particularly problematic in animation, where the intensity of such objects may appear to vary. Our approach is based on considering pyramidal rays (pyrays) formed by the viewpoint and the pixel. We test the proximity of a pyray to the boundary of an object, and if it is close (or marginal), the pyray splits into 4 sub-pyrays; this continues recursively with each marginal sub-pyray until the estimated change in pixel intensity is sufficiently small.
The same idea also solves the problem of soft shadows from distributed light sources, which can be calculated to any required precision. Our approach also enables a method of defocusing reflected pyrays, thereby producing realistic fuzzy reflections of light sources and other objects. An interesting byproduct of our method is a substantial speedup over regular supersampling even when all pixels are supersampled. Our algorithm was implemented on polygonal and circular objects, and produced images comparable in quality to stochastic sampling, but with greatly reduced run times.  相似文献   

9.
This paper proposes two variants of a simple but efficient algorithm for structure‐preserving halftoning. Our algorithm extends Floyd‐Steinberg error diffusion; the goal of our extension is not only to produce good tone similarity but also to preserve structure and especially contrast, motivated by our intuition that human perception is sensitive to contrast. By enhancing contrast we attempt to preserve and enhance structure also. Our basic algorithm employs an adaptive, contrast‐aware mask. To enhance contrast, darker pixels should be more likely to be chosen as black pixels while lighter pixels should be more likely to be set as white. Therefore, when the positive error is diffused to nearby pixels in a mask, the dark pixels absorb less error and the light pixels absorb more. Conversely, negative error is distributed preferentially to dark pixels. We also propose using a mask with values that drop off steeply from the centre, intended to promote good spatial distribution. It is a very fast method whose speed mainly depends on the size of the mask. But this method suffers from distracting patterns. We then propose a variant on the basic idea which overcomes the first algorithm's shortcomings while maintaining its advantages through a priority‐aware scheme. Rather than proceeding in random or raster order, we sort the image first; each pixel is assigned a priority based on its up‐to‐date distance to black or to white, and pixels with extreme intensities are processed earlier. Since we use the same mask strategy as before, we promote good spatial distribution and high contrast. We use tone similarity, structure similarity, and contrast similarity to validate our algorithm. Comparisons with recent structure‐aware algorithms show that our method gives better results without sacrificing speed.  相似文献   

10.
Both texture maps and procedural shaders surfer from rendering artifacts during minification. Unlike texture maps, there exist no good automatic method to antialias procedural shaders. Given a procedural shader for a surface, we present a method that automatically creates an antialiased version of the procedural shader. The new procedural shader maintains the original shader's details but reduces artifacts (aliasing or noise) due to minification. This new algorithm creates a pyramid similar to a MIP-Map in order to represent the shader. Instead of storing per-texel color, pyramid stores weighted sums of reflectance functions, allowing a wider range of effects to be antialiased. The stored reflectance functions are automatically selected based on an analysis of the different reflectances found over the surface. When the rendered surface is viewed at close range, the original shader is used, but as the texture footprint grows, the algorithm gradually replaces the shader's result with an antialiased one.  相似文献   

11.
Shadow mapping has been extensively used for real‐time shadow rendering in 3D computer games, though it suffers from the inherent aliasing problems due to its image‐based nature. This paper presents an enhanced variant of light space perspective shadow maps to optimize perspective aliasing distribution in possible general cases where the light and view directions are not orthogonal. To be mathematically sound, the generalized representation of perspective aliasing errors has been derived in detail. Our experiments have shown the enhanced shadow quality using our algorithm in dynamic scenes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we present a novel image based algorithm to render visually plausible anti‐aliased soft shadows in a robust and efficient manner. To achieve both high visual quality and high performance, it employs an accurate shadow map filtering method which guarantees smooth penumbrae and high quality anisotropic anti‐aliasing of the sharp transitions. Unlike approaches based on pre‐filtering approximations, our approach does not suffer from light bleeding or losing contact shadows. Discretization artefacts are avoided by creating virtual shadow maps on the fly according to a novel shadow map resolution prediction model. This model takes into account the screen space frequency of the penumbrae via a perceptual metric which has been directly established from an appropriate user study. Consequently, our algorithm always generates shadow maps with minimal resolutions enabling high performance while guarantying high quality. Thanks to this perceptual model, our algorithm can sometimes be faster at rendering soft shadows than hard shadows. It can render game‐like scenes at very high frame rates, and extremely large and complex scenes such as CAD models at interactive rates. In addition, our algorithm is highly scalable, and the quality versus performance trade‐off can be easily tweaked.  相似文献   

13.
To improve image quality in computer graphics, antialiazing techniques such as supersampling and multisampling are used. We explore a family of inexpensive sampling schemes that cost as little as 1.25 samples per pixel and up to 2.0 samples per pixel. By placing sample points in the corners or on the edges of the pixels, sharing can occur between pixels, and this makes it possible to create inexpensive sampling schemes. Using an evaluation and optimization framework, we present optimized sampling patterns costing 1.25, 1.5, 1.75 and 2.0 samples per pixel.  相似文献   

14.
This paper introduces an accurate real‐time soft shadow algorithm that uses sample based visibility. Initially, we present a GPU‐based alias‐free hard shadow map algorithm that typically requires only a single render pass from the light, in contrast to using depth peeling and one pass per layer. For closed objects, we also suppress the need for a bias. The method is extended to soft shadow sampling for an arbitrarily shaped area‐/volumetric light source using 128‐1024 light samples per screen pixel. The alias‐free shadow map guarantees that the visibility is accurately sampled per screen‐space pixel, even for arbitrarily shaped (e.g. non‐planar) surfaces or solid objects. Another contribution is a smooth coherent shading model to avoid common light leakage near shadow borders due to normal interpolation.  相似文献   

15.
We present a new method for rapidly computing shadows from semi‐transparent objects like hair. Our deep opacity maps method extends the concept of opacity shadow maps by using a depth map to obtain a per pixel distribution of opacity layers. This approach eliminates the layering artifacts of opacity shadow maps and requires far fewer layers to achieve high quality shadow computation. Furthermore, it is faster than the density clustering technique, and produces less noise with comparable shadow quality. We provide qualitative comparisons to these previous methods and give performance results. Our algorithm is easy to implement, faster, and more memory efficient, enabling us to generate high quality hair shadows in real‐time using graphics hardware on a standard PC.  相似文献   

16.
The incident indirect light over a range of image pixels is often coherent. Two common approaches to exploit this inter‐pixel coherence to improve rendering performance are Irradiance Caching and Radiance Caching. Both compute incident indirect light only for a small subset of pixels (the cache), and later interpolate between pixels. Irradiance Caching uses scalar values that can be interpolated efficiently, but cannot account for shading variations caused by normal and reflectance variation between cache items. Radiance Caching maintains directional information, e.g., to allow highlights between cache items, but at the cost of storing and evaluating a Spherical Harmonics (SH) function per pixel. The arithmetic and bandwidth cost for this evaluation is linear in the number of coefficients and can be substantial. In this paper, we propose a method to replace it by an efficient per‐cache item pre‐filtering based on MIP maps — such as previously done for environment maps — leading to a single constant‐time lookup per pixel. Additionally, per‐cache item geometry statistics stored in distance‐MIP maps are used to improve the quality of each pixel's lookup. Our approximate interactive global illumination approach is an order of magnitude faster than Radiance Caching with Phong BRDFs and can be combined with Monte Carlo‐raytracing, Point‐based Global Illumination or Instant Radiosity.  相似文献   

17.
陈嵘  李鹏  黄勇 《计算机科学》2018,45(6):291-295
对视频监控中的运动阴影问题进行了研究,提出一种颜色特征、归一化向量距离、亮度比值相融合的阴影去除方法。首先,通过混合高斯模型建立背景图像,利用背景差分法分离运动区域。然后,采用串行处理方法检测运动区域中的阴影像素。在RGB颜色空间下根据颜色一致性特征消除阴影之后,根据运动区域的归一化向量距离分布直方图进一步检测阴影像素。最后,针对阴影检测过程中存在的误检问题,建立像素的光照模型,计算阴影像素与背景像素的亮度比值,并根据置信区间排除误检的前景像素。实验结果表明,该方法能够克服单特征方法的局限性,在多个真实场景下能有效检测与去除阴影,适应性强,鲁棒性好,处理时间适中。  相似文献   

18.
Abstract— The bottlenecks in achieving high resolution for active‐matrix OLED (AMOLED) displays based on currently available manufacturing processes were evaluated and compared. The use of a shadow mask has proven to be viable for mass production, but the fabrication of high‐precision shadow masks becomes very difficult when the resolution exceeds 180 ppi. The latest breakthrough in increasing display resolution is presented. Without an increase in cost, the limitations of the conventional shadow‐mask process using novel subpixel designs have been successfully overcome. A high resolution reaching of 270 ppi has been successfully demonstrated on a 3‐in. VGA‐format AMOLED display, fabricated by using a shadow mask with a much lower resolution of 135 ppi. This innovative pixel design opens up the possibilities of manufacturing high‐resolution displays using a relatively low‐resolution shadow mask.  相似文献   

19.
Recent soft shadow mapping techniques based on back-projection can render high quality soft shadows in real time. However, real time high quality rendering of large penumbrae is still challenging, especially when multilayer shadow maps are used to reduce single light sample silhouette artifact. In this paper, we present an efficient algorithm to attack this problem. We first present a GPU-friendly packet-based approach rendering a packet of neighboring pixels together to amortize the cost of computing visibility factors. Then, we propose a hierarchical technique to quickly locate the contour edges, further reducing the computation cost. At last, we suggest a multi-view shadow map approach to reduce the single light sample artifact. We also demonstrate its higher image quality and higher efficiency compared to the existing depth peeling approaches.  相似文献   

20.
为解决运动前景的准确分割受运动阴影影响的问题,提出了一种融合色彩比和梯度不变性的运动阴影检测算法。该算法分析了阴影像素的色彩比和区域纹理梯度的光照不变性,利用亮度变化特性和色彩比不变性初步确定候选运动前景中的阴影像素,然后在候选阴影区域利用纹理梯度不变性进行去错处理,两者的结合弥补了单一特征或单一类型特征的阴影检测性能差的缺陷,提高了阴影检测率和阴影分辨率,能够准确地将阴影和前景区别开来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号