首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two forms of DNA helicase activity, Rad3 and ATPase III, were previously purified from the yeast Saccharomyces cerevisiae and characterized. Here, we have identified and purified an additional DNA helicase activity from S. cerevisiae to near homogeneity. This helicase differs from those described previously in its chromatographic behavior, molecular weight, enzymatic properties, and genetic properties. Thus, we named it DNA helicase III. Its apparent molecular mass is about 120 kDa as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. DNA helicase III requires a divalent cation Mg2+ or Mn2+, either ATP or dATP, and a single-stranded portion on the duplex substrate. Helicase III moves in the 5'-->3' direction on single-stranded portions of the substrate and unwinds the strand of DNA in the 3'-->5' direction. It also has an intrinsic DNA-dependent ATPase (dATPase) activity that hydrolyzes either ATP or dATP to ADP or dADP and orthophosphate in the presence of DNA. DNA helicase III activity was not affected by either rad3 or radH mutations, suggesting that it is encoded by a gene different from RAD3 and RADH.  相似文献   

2.
A novel DNA helicase, scHelI, has been purified from whole cell extracts of Saccharomyces cerevisiae using biochemical assays to monitor the fractionation. The enzyme unwinds partial duplex DNA substrates, as long as 343 base pairs in length, in a reaction that is dependent on either ATP or dATP hydrolysis. scHelI also catalyzes a single-stranded DNA-dependent ATP hydrolysis reaction; the apparent Km for ATP is 325 microM. The unwinding reaction on circular partial duplex substrates is biphasic, with a fast component occurring within 5 min of the initiation of the reaction and a slow component continuing to 60 min. This is in contrast to the ATP hydrolysis reaction, which exhibits linear kinetics for 60 min. The direction of the unwinding reaction is 5' to 3' with respect to the strand of DNA on which the enzyme is bound. The unwinding reaction is strongly stimulated by the addition of Escherichia coli single-stranded DNA-binding protein when long partial duplex substrates are used. The enzymatic activity of scHelI copurifies with a polypeptide of 135 kDa as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide sediments as a monomer in a glycerol gradient in the presence of 0.2 M NaCl.  相似文献   

3.
Here we demonstrate that the Saccharomyces cerevisiae DNA ligase activity, which we previously designated DNA ligase II, is encoded by the genomic DNA sequence YOR005c. Based on its homology with mammalian LIG4, this yeast gene has been named DNL4 and the enzyme activity renamed Dnl4. In agreement with others, we find that DNL4 is not required for vegetative growth but is involved in the repair of DNA double-strand breaks by non-homologous end joining. In contrast to a previous report, we find that a dnl4 null mutation has no effect on sporulation efficiency, indicating that Dnl4 is not required for proper meiotic chromosome behavior or subsequent ascosporogenesis in yeast. Disruption of the DNL4 gene in one strain, M1-2B, results in temperature-sensitive vegetative growth. At the restrictive temperature, mutant cells progressively lose viability and accumulate small, nucleated and non-dividing daughter cells which remain attached to the mother cell. This novel temperature-sensitive phenotype is complemented by retransformation with a plasmid-borne DNL4 gene. Thus, we conclude that the abnormal growth of the dnl4 mutant strain is a synthetic phenotype resulting from Dnl4 deficiency in combination with undetermined genetic factors in the M1-2B strain background.  相似文献   

4.
To elucidate how symptoms and signs of chronic heart failure are related to the filling pressure and cardiac output at rest, 58 patients (55 males, 3 females, mean age 57 +/- 9 years, range 30-75) with left ventricular ejection fraction (LVEF) < or = 30% and a lesion > or = 50% on a major coronary branch have been selected from patients submitted in 1985-1993 to a complete right and left cardiac catheterization including ventriculography and coronary angiography. Patients with recent myocardial infarction (MI), unstable angina, associated heart diseases or recent changes in body weight and in diuretic therapy were excluded. Clinical data were obtained at cardiac catheterization time from history, physical examination, chest X-ray and ECG. Patients with angina as limiting symptom were excluded from NYHA functional classification. Pulmonary venous congestion (PVC) was defined on X-ray as: absent, venous redistribution, interstitial pulmonary edema (IPE). Mean pulmonary capillary wedge pressure (PCWP) was recorded under fluoroscopy and cardiac index was measured by the Fick method. On the whole group, 96% of patients had had one or more MI (on ECG necrosis was anterior in 58%, inferior in 9%, anterior and inferior in 26%), 69% were in NYHA functional class III or IV, 54% had IPE and 45% had mitral regurgitation. 71% were under treatment with digitalis, 74% with diuretics and 39% with ACE-inhibitors. PCWP was correlated with LVEDV (r = 0.34; p < 0.001) but neither with LV mass nor with LV mass/volume ratio. It was significantly higher (p < 0.01) in patients with mild-moderate mitral regurgitation, in patients with necrosis involving both anterior and inferior walls (26 +/- 6 vs 21 +/- 8 mmHg in patients with single wall necrosis, p < 0.05) and in patients with multiple MI (26 +/- 7 vs 20 +/- 8 mmHg in patients with no or single MI, p < 0.02). Moreover, it was neither correlated with functional classification nor with PVC: of patients with PCWP > 24 mmHg, 14% were in II NYHA functional class and 21% had no PVC while of patients with PCWP < 15 mmHg, 36% were in NYHA functional class IV and 7% had IPE. Cardiac index was reduced below 2.3 l/min/m2 in 21% of patients: these patients had increased pulmonary (p < 0.0002) and systemic (p < 0.0001) vascular resistance, increased systolic (p < 0.001) and diastolic (p < 0.01) pulmonary artery pressure and reduced LVEF (p < 0.01) and right ventricular ejection fraction (p < 0.03). Furthermore, on the whole patients an inverse correlation was found between cardiac index and functional classification (r = -0.42; p < 0.01). The reliability of NYHA functional class IV, physical signs of heart failure and IPE for estimating PCWP > 24 mmHg and cardiac index < 2.3 l/min/m2 was rather limited although high specificity was shown for gallop sounds (92 and 97%) and jugular vein distension (88 and 97%). In conclusion, in coronary patients with chronic severe LV systolic dysfunction a mismatch between clinical data and central hemodynamics is not rare. The reliability of functional class, X-ray PVC and physical signs to predict central hemodynamics in fairly limited.  相似文献   

5.
Caspases (aspartate-specific cysteine proteases) play a critical role in the execution of the mammalian apoptotic program. To address the regulation of human caspase activation, we used the yeast Saccharomyces cerevisiae, which is devoid of endogenous caspases. The apical procaspases, -8beta and -10, were efficiently processed and activated in yeast. Although protease activity, per se, was insufficient to drive cell death, caspase-10 activity had little effect on cell viability, whereas expression of caspase-8beta was cytotoxic. This lethal phenotype was abrogated by co-expression of the pan-caspase inhibitor, baculovirus p35, and by mutation of the active site cysteine of procaspase-8beta. In contrast, autoactivation of the executioner caspase-3 and -6 zymogens was not detected. Procaspase-3 activation required co-expression of procaspase-8 or -10. Surprisingly, activation of procaspase-6 required proteolytic activities other than caspase-8, -10, or -3. Caspase-8beta or -10 activity was insufficient to catalyze the maturation of procaspase-6. Moreover, a constitutively active caspase-3, although cytotoxic in its own right, was unable to induce the processing of wild-type procaspase-6 and vice versa. These results distinguish sequential modes of activation for different caspases in vivo and establish a yeast model system to examine the regulation of caspase cascades. Moreover, the distinct terminal phenotypes induced by various caspases attest to differences in the cellular targets of these apoptotic proteases, which may be defined using this system.  相似文献   

6.
Fascin is an actin-bundling protein that was first isolated from cytoplasmic extracts of sea urchin eggs [Kane, 1975: J. Cell Biol. 66:305-315] and was the first bundling protein to be characterized in vitro. Subsequent work has shown that fascin bundles actin filaments in fertilized egg microvilli and filopodia of phagocytic coelomocytes [Otto et al., 1980: Cell Motil. 1:31-40; Otto and Bryan, 1981: Cell Motil. 1:179-192]. Fifteen years later, the molecular cloning of sea urchin fascin [Bryan et al., 1993: Proc. Natl. Acad. Sci. U.S.A. 90:9115-9119] has led to the identification and characterization of homologous proteins in Drosophila [Cant et al., 1994: J. Cell Biol. 125:369-380], Xenopus [Holthuis et al., 1994: Biochim. Biophys. Acta. 1219:184-188], rodents [Edwards et al,. 1995: J. Biol. Chem. 270:10764-10770], and humans [Duh et al., 1994: DNA Cell Biol. 13:821-827; Mosialos et al., 1994: J. Virol. 68:7320-7328] that bundle actin filaments into structures which stabilize cellular processes ranging from mechanosensory bristles to the filopodia of nerve growth cones. Fascin has emerged from relative obscurity as an exotic invertebrate egg protein to being recognized as a widely expressed protein found in a broad spectrum of tissues and organisms. The purpose of this review is to relate the early studies done on the sea urchin and HeLa cell fascins to the recent molecular biology that defines a family of bundling proteins, and discuss the current state of knowledge regarding fascin structure and function.  相似文献   

7.
8.
To test the hypothesis that the major irrational evaluative beliefs postulated by Rational Emotive Behavior Therapy are related to marital conflict, 15 married couples participated in a thought-listing procedure. During this procedure, three idiosyncratic scenes portraying marital conflict and three control scenes free of conflict were identified for and presented to each member of the dyad. Analysis indicated that the conflict-portraying scenes were associated with significantly more irrational evaluative beliefs and significantly fewer rational cognitions than the control scenes.  相似文献   

9.
Cysteinyl-tRNA synthetase (CRS) from Saccharomyces cerevisiae was purified 2300-fold with a yield of 33%, to a high specific activity (kcat4.3 s-1 at 25 degrees C for the aminoacylation of yeast tRNACys). SDS-PAGE revealed a single polypeptide corresponding to a molecular mass of 86 kDa. Polyclonal antibodies to the purified protein inactivated CRS activity and detected only one polypeptide of 86 kDa in a yeast extract subjected to SDS-PAGE followed by immunoblotting. In contrast to bacterial CRS which is a monomer of about 50 kDa, the native yeast enzyme behaved as a dimer, as assessed by gel filtration and cross-linking. Its subunit molecular mass is in good agreement with the value of 87.5 kDa calculated for the protein encoded by the yeast genomic sequence YNL247w. The latter was previously tentatively assigned to CRS, based on limited sequence similarities to the corresponding enzyme from other sources. Determination of the amino acid sequence of internal polypeptides derived from the purified yeast enzyme confirmed this assignment. Alignment of the primary sequences of prokaryotic and yeast CRS reveals that the larger size of the latter is accounted for mostly by several insertions within the sequence.  相似文献   

10.
11.
The PRT1, TIF34, GCD10, and SUI1 proteins of Saccharomyces cerevisiae were found previously to copurify with eukaryotic translation initiation factor 3 (eIF3) activity. Although TIF32, NIP1, and TIF35 are homologous to subunits of human eIF3, they were not known to be components of the yeast factor. We detected interactions between PRT1, TIF34, and TIF35 by the yeast two-hybrid assay and in vitro binding assays. Discrete segments (70-150 amino acids) of PRT1 and TIF35 were found to be responsible for their binding to TIF34. Temperature-sensitive mutations mapping in WD-repeat domains of TIF34 were isolated that decreased binding between TIF34 and TIF35 in vitro. The lethal effect of these mutations was suppressed by increasing TIF35 gene dosage, suggesting that the TIF34-TIF35 interaction is important for TIF34 function in translation. Pairwise in vitro interactions were also detected between PRT1 and TIF32, TIF32 and NIP1, and NIP1 and SUI1. Furthermore, PRT1, NIP1, TIF34, TIF35, and a polypeptide with the size of TIF32 were specifically coimmunoprecipitated from the ribosomal salt wash fraction. We propose that all five yeast proteins homologous to human eIF3 subunits are components of a stable heteromeric complex in vivo and may comprise the conserved core of yeast eIF3.  相似文献   

12.
A new species of DNA polymerase has been purified more than 10 000-fold from the cytoplasm of erythroid hyperplastic bone marrow. This DNA polymerase, in contrast to previously described eukaryotic DNA polymerases, is associated with a very active 3' to 5' exonuclease activity. Similar to the 3' to 5' exonuclease activity associated with prokaryotic DNA polymerases, this enzyme catalyzes the removal of 3'-terminal nucleotides from DNA, as well as a template-dependent conversion of deoxyribonucleoside triphosphates to monophosphates. The exonuclease activity is not separable from the DNA polymerase activity by chromatography on DEAE-Sephadex or hydroxylapatite, and upon sucrose density gradient centrifugation the two activities cosediment at 7 S or at 11 S depending on the ionic strength. Both exonuclease and polymerase activities have identical rates of heat inactivation and both are equally sensitive to hemin and Rifamycin AF/013, inhibitors of DNA synthesis that act by binding to DNA polymerase and causing its dissociation from its template/primer. These results are consistent with the coexistence of two enzyme activities in a single protein.  相似文献   

13.
A 40 S multienzyme complex containing mtDNA polymerase was isolated from mitochondria of S. cerevisiae by density gradient centrifugation and by gel filtration chromatography. Besides DNA polymerase, RNA polymerase, primase, 3'-->5' exonuclease and an ATPase activities were found to be associated with it. The presence of some of these enzymes were confirmed by Western blot. This high molecular weight multienzyme complex containing DNA has most of the attributes of a putative replisome.  相似文献   

14.
15.
Cytochrome oxidase (COX) is considered to integrate in a single enzyme two consecutive mechanistically different redox activities--oxidase and peroxidase--that can be catalyzed elsewhere by separate hemoproteins. From the viewpoint of energy transduction, the enzyme is essentially a proton pumping peroxidase with a built-in auxiliary eu-oxidase module that activates oxygen and prepares in situ H2O2, a thermodynamically efficient but potentially hazardous electron acceptor for the proton pumping peroxidase. The eu-oxidase and peroxidase phases of the catalytic cycle may be performed by different structural states of COX. Resolution of the proton pumping peroxidase activity of COX and identification of individual charge translocation steps inherent in this reaction are discussed, as well as the specific role of the two input proton channels in proton translocation.  相似文献   

16.
It has long been known that diploid strains of yeast are more resistant to gamma-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and alpha 2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/alpha effects are of a very large amplitude, after both UV and gamma-rays, and also depends on a1 and alpha 2. The coexpression of a and alpha in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G2 phase cells. Related to this, the coexpression of a and alpha in RAD+ haploids depresses UV-induced mutagenesis in G2 cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G1 UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-alpha 2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.  相似文献   

17.
Two overlapping DNA fragments from yeast Saccharomyces cerevisiae containing the actin gene have been inserted into pBR322 and cloned in E.coli. Clones were identified by hybridization to complementary RNA from a plasmid containing a copy of Dictyostelium actin mRNA. One recombinant plasmid obtained (pYA102) contains a 3.93-kb Hindlll fragment, the other (pYA208) a 5.1-kb Pstl fragment, both share a common 2.2-kb fragment harboring part of the actin gene. Cloned yeast actin DNA was identified by R-loop formation and translation of the hybridized actin mRNA and by DNA sequence analysis. Cytoplasmic actin mRNA has been estimated to be about 1250 nucleotides long. There is only one type of the actin gene in S.cerevisiae.  相似文献   

18.
19.
We recently showed the involvement of the L-arginine/nitric oxide (NO) pathway in acid-induced duodenal mucosal bicarbonate secretion in rats. The aim of the present study was to confirm this observation in pigs by direct measurements of NO production. Experiments were performed on 16 anaesthetized pigs of both sexes treated with guanethidine (6 mg kg-1, intravenously). A duodenal segment, devoid of pancreaticobiliary influxes, was perfused with saline and the duodenal mucosal bicarbonate secretion was calculated from continuous measurements of pH and PCO2. The perfusate contents of NO and its oxidative product nitrite were determined by chemiluminescence, after reduction of nitrite to NO. Luminal acidification with 30 mM hydrochloric acid increased the output of bicarbonate as well as NO to the perfusate, by 195 +/- 45% and 106 +/- 10%, respectively. These responses to acid were markedly inhibited by adding the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.3 mM) to the perfusate. The inhibitory effect of L-NMMA could be reversed by administration of L-arginine (3 mM). The study presents simultaneous measurements of bicarbonate and NO outputs to a duodenal luminal perfusate. The results strongly support the view that the L-arginine/NO pathway is involved in the acid-induced duodenal mucosal bicarbonate secretory response.  相似文献   

20.
Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joining activity. This minor DNA joining activity, which contributes 5-10% of the total cellular DNA joining activity, forms a 90 kDa enzyme-adenylate intermediate which, unlike the Cdc9 enzyme-adenylate intermediate, reacts with an oligo (pdT)/poly (rA) substrate. The levels of the minor DNA joining activity are not altered by mutation or by overexpression of the CDC9 gene. Furthermore, the 90 kDa polypeptide is not recognized by a Cdc9 antiserum. Since this minor species does not appear to be a modified form of Cdc9 DNA ligase, it has been designated as S. cerevisiae DNA ligase II. Based on the similarities in polynucleotide substrate specificity, this enzyme may be the functional homolog of mammalian DNA ligase III or IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号