首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we showed that the low-molecular-weight mucin (MG2, encoded by MUC7), a major component of human submandibular/sublingual saliva, is a bacterial receptor that coats the tooth surface. Here we tested the hypothesis that the structure of its carbohydrate residues contains important information about its function. Purified MG2 (Mr 120 000) was digested with trypsin, and the resulting Mr 90 000 fragment, which carried primarily O-linked oligosaccharides, was subjected to reductive beta-elimination. The released oligosaccharides were characterized by using nuclear magnetic resonance spectroscopy and mass spectrometry. Of the 41 different structures we detected, the most prominent included NeuAcalpha2-->3Galbeta1-->3GalNAc-ol (sialyl-T antigen), Galbeta1-->4(Fucalpha1-->3)GlcNAcbeta1-->6(Galbeta1 -->3)GalNAc-ol [type 2 core with Lewisx (Lex) determinant], and NeuAcalpha2-->3Galbeta1-->4(Fucalpha1-->3)GlcNAcbet a1-->6(Galbeta1--> 3) GalNAc-ol [type 2 core with sialyl Lex (sLex) determinant]. We also detected di-, tri-, and pentasaccharides with one sulfate group. Lex, sLex, and related sulfated structures are ligands for selectins, adhesion molecules that mediate leukocyte trafficking. Therefore, we investigated whether MG2 was a selectin ligand. In an enzyme-linked immunosorbent assay, L-selectin chimeras interacted with immobilized MG2 in a Ca2+-dependent manner. L-Selectin chimeras also bound to MG2 immobilized on nitrocellulose. Together, these results suggest that the saccharides that MG2 carries could specify some of its important functions, which may include mediating leukocyte interactions in the oral cavity.  相似文献   

2.
We isolated a cDNA clone encoding mouse N-acetylglucosamine-6-O-sulfotransferase based on sequence homology to the previously cloned mouse chondroitin 6-sulfotransferase. The cDNA clone contained an open reading frame that predicts a type II transmembrane protein composed of 483 amino acid residues. The expressed enzyme transferred sulfate to the 6 position of nonreducing GlcNAc in GlcNAcbeta1-3Galbeta1-4GlcNAc. Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc and various glycosaminoglycans did not serve as acceptors. Expression of the cDNA in COS-7 cells resulted in production of a cell-surface antigen, the epitope of which was NeuAcalpha2-3Galbeta1-4(SO4-6)GlcNAc; double transfection with fucosyltransferase IV yielded Galbeta1-4(Fucalpha1-3)(SO4-6)GlcNAc antigen. The sulfotransferase mRNA was strongly expressed in the cerebrum, cerebellum, eye, pancreas, and lung of adult mice. In situ hybridization revealed that the mRNA was localized in high endothelial venules of mesenteric lymph nodes. The sulfotransferase was concluded to be involved in biosynthesis of glycoconjugates bearing the 6-sulfo N-acetyllactosamine structure such as 6-sulfo sialyl Lewis X. The products of the sulfotransferase probably include glycoconjugates with intercellular recognition signals; one candidate of such a glycoconjugate is an L-selectin ligand.  相似文献   

3.
We report on the identification, molecular cloning, and characterization of an alpha1,3 fucosyltransferase (alpha1,3FT) expressed by the nematode, Caenorhabditis elegans . Although C. elegans glycoconjugates do not express the Lewis x antigen Galbeta1-->4[Fucalpha1-->3]GlcNAcbeta-->R, detergent extracts of adult C.elegans contain an alpha1,3FT that can fucosylate both nonsialylated and sialylated acceptor glycans to generate the Lexand sialyl Lexantigens, as well as the lacdiNAc-containing acceptor GalNAcbeta1-->4GlcNAcbeta1-->R to generate GalNAcbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R. A search of the C.elegans genome database revealed the existence of a gene with 20-23% overall identity to all five cloned human alpha1,3FTs. The putative cDNA for the C.elegans alpha1,3FT (CEFT-1) was amplified by PCR from a cDNA lambdaZAP library, cloned, and sequenced. COS7 cells transiently transfected with cDNA encoding CEFT-1 express the Lex, but not sLexantigen. The CEFT-1 in the transfected cell extracts can synthesize Lex, but not sialyl Lex, using exogenous acceptors. A second fucosyltransferase activity was detected in extracts of C. elegans that transfers Fuc in alpha1,2 linkage to Gal specifically on type-1 chains. The discovery of alpha-fucosyltransferases in C. elegans opens the possibility of using this well-characterized nematode as a model system for studying the role of fucosylated glycans in the development and survival of C.elegans and possibly other helminths.  相似文献   

4.
The selectins interact in important normal and pathological situations with certain sialylated, fucosylated glycoconjugate ligands containing sialyl Lewisx(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac). Much effort has gone into the synthesis of sialylated and sulfated Lewisxanalogs as competitive ligands for the selectins. Since the natural selectin ligands GlyCAM-1 and PSGL-1 carry sialyl Lewisxas part of a branched Core 2 O-linked structure, we recently synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe and found it to be a moderately superior ligand for L and P-selectin (Koenig et al. , Glycobiology 7, 79-93, 1997). Other studies have shown that sulfate esters can replace sialic acid in some selectin ligands (Yeun et al. , Biochemistry, 31, 9126-9131, 1992; Imai et al. , Nature, 361, 555, 1993). Based upon these observations, we hypothesized that Neu5Acalpha2-3Galbeta1-3GalNAc might have the capability of interacting with L- and P-selectin. To examine this hypothesis, we synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)-GalNAc alpha1-OB, which was found to be 2- to 3-fold better than sialyl Lexfor P and L selectin, respectively. We also report the synthesis of an unusual structure GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe (GalNAc-Lewisx-O-methyl glycoside), which also proved to be a better inhibitor of L- and P-selectin than sialyl Lewisx-OMe. Combining this with our knowledge of Core 2 branched structures, we have synthesized a molecule that is 5- to 6-fold better at inhibiting L- and P-selectin than sialyl Lewisx-OMe, By contrast to unbranched structures, substitution of a sulfate ester group for a sialic acid residue in such a molecule resulted in a considerable loss of inhibition ability. Thus, the combination of a sialic acid residue on the primary (beta1-3) arm, and a modified Lexunit on the branched (beta1-6) arm on an O-linked Core 2 structure generated a monovalent synthetic oliogosaccharide inhibitor superior to SLexfor both L- and P-selectin.  相似文献   

5.
Two types of beta1,6-GlcNAc transferases (IGnT6) are involved in in vitro branching of polylactosamines: dIGnT6 (distally acting), transferring to the penultimate galactose residue in acceptors like GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-R, and cIGnT6 (centrally acting), transferring to the midchain galactoses in acceptors of the type (GlcNAcbeta1-3)Galbeta1-4GlcNAcbeta1-3Galbeta1-+ ++4GlcNAcbeta1-R. The roles of the two transferases in the biosynthesis of branched polylactosamine backbones have not been clearly elucidated. We report here that cIGnT6 activity is expressed in human (PA1) and murine (PC13) embryonal carcinoma (EC) cells, both of which contain branched polylactosamines in large amounts. In the presence of exogenous UDP-GlcNAc, lysates from both EC cells catalyzed the formation of the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc from the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc. The PA1 cell lysates were shown to also catalyze the formation of the branched heptasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3(+ ++GlcNAcbeta1-6)Galbeta1 -4GlcNAc and Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-+ ++4GlcNAcbeta1-3Galbeta1 -4GlcNAc from the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc in reactions characteristic to cIGnT6. By contrast, dIGnT6 activity was not detected in the lysates of the two EC cells that were incubated with UDP-GlcNAc and the acceptor trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Hence, it appears likely that cIGnT6, rather than dIGnT6 is responsible for the synthesis of the branched polylactosamine chains in these cells.  相似文献   

6.
Endothelial cells of high endothelial venules (HEV) in human peripheral lymph nodes expressed a distinct type of sialyl Lewis X antigen, which was detected preferentially with a set of anti-sialyl Lewis X antibodies, 2F3, 2H5 and HECA-452 in immunohistochemistry, while another set of anti-sialyl Lewis X antibodies, FH-6 and CSLEX-1, failed to detect it. The adhesion of cells expressing L-selectin to HEV was inhibited by members of the former set of antibodies in Stamper-Woodruff assays performed on frozen sections of human peripheral lymph nodes. Transfection of a cultured endothelial cell line with a human alpha1-->3 fucosyltransferase, Fuc-T VII, resulted in the expression of a distinct type of sialyl Lewis X antigen having the reactivity similar to that of HEV; i.e., the antigen appearing on the transfectant clone was detectable only with the set of 2F3, 2H5 and HECA-452, but not with the set of FH-6 and CSLEX-1. Treatment of transfectant cells with sodium chlorate, a metabolic inhibitor of sulfation, resulted in reactivity to the members of the latter set of antibodies, suggesting that sulfation of sialyl Lewis X moiety was the cause of the discrepancy in the reactivity of the anti-sialyl Lewis X antibodies. When tested against various authentic sulfated sialyl Lewis X determinants, 6-sulfo sialyl Lewis X and 6,6'-bis-sulfo sialyl Lewis X were found to be reactive to the antibodies, 2F3, 2H5 and HECA-452, but not with antibodies FH-6 and CSLEX-1, suggesting that the distinct type of sialyl Lewis X determinant on the HEV endothelial cells and Fuc-T VII-transfected endothelial cell clone are mainly 6-sulfo and/or 6,6'-bis-sulfo sialyl Lewis X determinants.  相似文献   

7.
P-selectin glycoprotein ligand-1 (PSGL-1) is a disulfide-bonded homodimeric mucin-like glycoprotein on leukocytes that interacts with both P- and E-selectin. In this report we describe the structures of the Ser/Thr-linked O-glycans of PSGL-1 synthesized by HL-60 cells metabolically radiolabeled with 3H-sugar precursors. In control studies, the O-glycans on CD43 (leukosialin), a mucin-like glycoprotein also expressed by HL-60 cells, were analyzed and compared to those of PSGL-1. O-Glycans were released from Ser/Thr residues by mild base/borohydride treatment of purified glycoproteins, and glycan structures were determined by a combination of techniques. In contrast to expectations, PSGL-1 is not heavily fucosylated; a majority of the O-glycans are disialylated or neutral forms of the core-2 tetrasaccharide Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAcOH++ +. A minority of the O-glycans are alpha-1,3-fucosylated that occur as two major species containing the sialyl Lewis x antigen; one species is a disialylated, monofucosylated glycan, and the other is a monosialylated, trifucosylated glycan having a polylactosamine backbone. CD43 lacks the fucosylated glycans found on PSGL-1 and is enriched for the nonfucosylated, disialylated core-2 hexasaccharide. These results demonstrate that PSGL-1 contains unique fucosylated O-glycans that are predicted to be critical for high affinity interactions between PSGL-1 and selectins.  相似文献   

8.
The human H(O) blood group is specified by the structure Fucalpha1-2Galbeta1-R, but the factors regulating expression of this determinant on cell surface glycoconjugates are not well understood. To learn more about the regulation of H blood group expression, cDNA encoding the human H-type GDPFuc:beta-D-galactoside alpha1, 2-fucosyltransferase (alpha1,2FT) was stably transfected into Chinese hamster ovary (CHO) cells. The new cell line, designated CHO(alpha1,2)FT, expressed surface neoglycans containing the H antigen. The structures of the fucosylated neoglycans in CHO(alpha1, 2)FT cells and the distribution of these glycans on glycoproteins were characterized. Seventeen percent of the [3H]Gal-labeled glycopeptides from CHO(alpha1,2)FT cells bound to the immobilized H blood group-specific lectin Ulex europaeus agglutinin-I (UEA-I), whereas none from parental CHO cells bound to the lectin. The glycopeptides from CHO(alpha1,2)FT cells binding to UEA-I contained polylactosamine [3Galbeta1-4GlcNAcbeta1-]n with the terminal sequence Fucalpha1-2Galbeta1- 4GlcNAc-R. Fucosylation of the polylactosamine sequences on complex-type N-glycans in CHO(alpha1, 2)FT cells caused a decrease in both sialylation and length of polylactosamine. Unexpectedly, only small amounts of terminal fucosylation was found in diantennary complex-type N-glycans. The O-glycans and glycolipids were not fucosylated by the H-type alpha1, 2FT. Two major high molecular weight glycoproteins, one of which was shown to be the lysosome-associated membrane glycoprotein LAMP-1, preferentially contained the H-type structure and were bound by immobilized UEA-I. These results demonstrate that in CHO cells the expressed H-type alpha1,2FT does not indiscriminately fucosylate terminal galactosyl residues in complex-type N-glycans, but it favors glycans containing polylactosamine and dramatically alters their length and sialylation.  相似文献   

9.
Poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine repeats and provides the backbone structure for additional modifications such as sialyl Lex. Poly-N-acetyllactosamines in mucin-type O-glycans can be formed in core 2 branched oligosaccharides, which are synthesized by core 2 beta-1,6-N-acetylglucosaminyltransferase. Using a beta-1, 4-galactosyltransferase (beta4Gal-TI) present in milk and the recently cloned beta-1,3-N-acetylglucosaminyltransferase, the formation of poly-N-acetyllactosamine was found to be extremely inefficient starting from a core 2 branched oligosaccharide, GlcNAcbeta1-->6(Galbeta1-->3)GalNAcalpha-->R. Since the majority of synthesized oligosaccharides contained N-acetylglucosamine at the nonreducing ends, galactosylation was judged to be inefficient, prompting us to test novel members of the beta4Gal-T gene family for this synthesis. Using various synthetic acceptors and recombinant beta4Gal-Ts, beta4Gal-TIV was found to be most efficient in the addition of a single galactose residue to GlcNAcbeta1-->6(Galbeta1-->3)GalNAcalpha-->R. Moreover, beta4Gal-TIV, together with beta-1,3-N-acetylglucosaminyltransferase, was capable of synthesizing poly-N-acetyllactosamine in core 2 branched oligosaccharides. On the other hand, beta4Gal-TI was found to be most efficient for poly-N-acetyllactosamine synthesis in N-glycans. In contrast to beta4Gal-TI, the efficiency of beta4Gal-TIV decreased dramatically as the acceptors contained more N-acetyllactosamine repeats, consistent with the fact that core 2 branched O-glycans contain fewer and shorter poly-N-acetyllactosamines than N-glycans in many cells. These results, as a whole, indicate that beta4Gal-TIV is responsible for poly-N-acetyllactosamine synthesis in core 2 branched O-glycans.  相似文献   

10.
This article describes oligosaccharide structures of mucin isolated from nude mouse xenograft tumors produced by LS174T-HM7 cells, a subline of the human colon carcinoma LS174T with higher metastatic tendency and higher mucin production. A striking feature of the oligosaccharides of the LS174T-HM7 xenograft tumor mucin was a predominance of sulfated Lewis X determinants: HSO3-Galbeta1-4(Fucalpha1-3)GlcNAc. In addition to one previously known saccharide with one sulfated Lewis X determinant, the HM7 xenograft tumor mucin contained multiple novel structures containing one, two, or three sulfated Lewis X determinants. This determinant, known to act as a selectin ligand, has been found previously in minor saccharide components of human milk as well as mucins, but never before as a predominant structure in one mucin source.  相似文献   

11.
12.
Four newly developed monoclonal antibodies (MAbs) are characterized using flowcytometry, enzyme-linked immunoadsorbent assay (ELISA), immunoprecipitation and Western blots, carbohydrate epitope mapping, glycosidase cleavage, and competition binding assays. Their effects on selectin binding to myeloid cells was tested. These MAbs react only with myeloid cells. MAbs CI-1, BU60, and HIM95 recognize epitopes expressed by CD11/CD18 (beta2) integrins, while HI247 and CSLEX1 do not. The epitopes require Lewis x [Galbeta1-4 (Fucalpha1-3)GlcNAc] based on reactivity with oligosaccharide-polyacrylamide-biotin or oligosaccharide-BSA conjugates. MAb HI247 recognizes a related structure, sialyl-Lewis x, NeuAcalpha2-3GaLbeta1-4(Fucalpha1-3)GlcNAc. The three MAbs against Lewis x show some minor differences in their reactivity such as recognizing their antigens on CD11/CD18 integrins after endo-beta-galactosidase treatment and recognizing free Lewis x. The hydroxyl group on C-3 of the terminal galactose is important for recognition by MAb CI-1, BU60, and HIM95 as its substitution with sulfo group of sialic acid abolishes the binding of these MAbs. The C-3 sialic acid is crucial for the binding of MAb HI247. Its replacement by sulphate or its cleavage by sialidase eliminates recognition by this MAb. MAbs HI247 and CSLEX-1 did not react in ELISA with immobilized CD11/CD18, suggesting that the majority of sialyl Lewis x on CD11/CD18 molecules may have sialic acid 6-linked rather than 3-linked to galactose. Unexpectedly, MAb BU60 inhibited binding of P-selectin mu chain chimera to HL-60 or U937 cells, while CI-1, HIM95 and three other defined anti-Lewis x MAbs (6C7, M6-1 and LeuM1) did not. MAb HI247 inhibited binding of both E- and P-selectin chimeras to these cell lines more effectively than several characterized MAbs (CSLEX-1, FH6, HECA-452) to sialyl Lewis x and related oligosaccharides. Certain combinations of these anticarbohydrate MAbs had additive inhibitory effects on selectin binding, suggesting a potential application of these new MAbs in cell adhesion/migration and tumor metastasis studies.  相似文献   

13.
Enzymatic 3-O-sulfation of terminal beta-Gal residues was investigated by screening sulfotransferase activity present in 37 human tissue specimens toward the following synthesized acceptor moieties: Galbeta1,3GalNAc alpha-O-Al, Galbeta1,4GlcNAcbeta-O-Al, Galbeta1,3GlcNAcbeta-O-Al, and mucin-type Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn structures containing a C-3 methyl substituent on either Gal. Two distinct types of Gal: 3-O-sulfotransferases were revealed. One (Group A) was specific for the Galbeta1, 3GalNAc alpha- linkage and the other (Group B) was directed toward the Galbeta1,4GlcNAc branch beta1,6 linked to the blood group T hapten. Enzyme activities found in breast tissues were unique in showing a strict specificity for the T-hapten. Galbeta-O-allyl or benzyl did not serve as acceptors for Group A but were very active with Group B. An examination of activity present in six human sera revealed a specificity of the serum enzyme toward beta1,3 linked Gal, particularly, the T-hapten without beta1,6 branching. Group A was highly active toward T-hapten/acrylamide copolymer, anti-freeze glycoprotein, and fetuin O-glycosidic asialo glycopeptide; less active toward fetuin triantennary asialo glycopeptide; and least active toward bovine IgG diantennary glycopeptide. Group B was moderately and highly active, respectively, with the latter two glycopeptides noted and least active with the first two. Competition experiments performed with Galbeta1,3GalNAc alpha-O-Al and Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn having a C-3 substituent (methyl or sulfate) on either Gal reinforced earlier findings on the specificity characteristics of Group A and Group B. Group A displayed a wider range of optimal activity (pH 6.0-7.4), whereas Group B possessed a peak of activity at pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereas Mn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+ stimulated Group B 100% but inhibited Group A 35%. Group A and Group B enzymes appeared to be of the same molecular size (<100,000 Da) as observed by Sephacryl S-100 HR column chromatography. The following effects upon Gal: 3-O-sulfotransferase activities by fucose, sulfate, and other substituents on the carbohydrate chains were noted. (1) A methyl or GlcNAc substituent on C-6 of GalNAc diminished the ability of Galbeta1,3GalNAc alpha-O-Al to act as an acceptor for Group A. (2) An alpha1,3-fucosyl residue on the beta1,6 branch in the mucin core structure did not affect the activity of Group A toward Gal linked beta1,3 to GalNAc alpha-. (3) Lewis x and Lewis a terminals did not serve as acceptors for either Group A or B enzymes. (4) Elimination of Group B activity on Gal in the beta1,6 branch owing to the presence of a 3-fucosyl or 6-sulfo group on GlcNAc did not hinder any action toward Gal linked beta1,3 to GalNAc alpha. (5) Group A activity on Gal linked beta1,3 to GalNAc remained unaffected by 3'-sulfation of the beta1,6 branch. The reverse was true for Group B. (6) The acceptor activity of the T-hapten was increased somewhat upon C-6 sulfation of GalNAc, whereas, C-6 sialylation resulted in an 85% loss of activity. (7) A novel finding was that Galbeta1,4GlcNAcbeta-O-Al and Galbeta1,3GlcNAcbeta-O-Al, upon C-6 sulfation of the GlcNAc moiety, became 100% inactive and 5- to 7-fold active, respectively, in their ability to serve as acceptors for Group B.  相似文献   

14.
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.  相似文献   

15.
We investigated the molecular species of sulfated sialyl Lewis X determinants, the putative L-selectin ligand, expressed on high endothelial venules (HEV) in human lymph nodes. Comparison of the reactivity pattern of HEV with the reactivity of the pure 6-sulfo, 6'-sulfo, or 6,6'-bissulfo sialyl Lewis X determinant with hitherto known anti-sialyl Lewis X antibodies strongly suggested 6-sulfo sialyl Lewis X to be the best candidate for the major sulfated sialyl Lewis X determinant on HEV, followed by 6,6'-bissulfo sialyl Lewis X, whereas 6'-sulfo sialyl Lewis X was unlikely. We newly generated monoclonal antibodies (mAbs) G152 and G72 directed against 6-sulfo sialyl Lewis X, which intensely labeled HEV in immunohistochemical examination and inhibited binding of recombinant L-selectin-IgG to HEV, suggesting that the determinant serves as a ligand for L-selectin. To test the concomitant expression of 6, 6'-bissulfo sialyl Lewis X, specific mAbs (G2706, G27011, G27037, and G27039) were generated, but all antibodies failed to react to HEV. Next, we established mAbs (AG97 and AG273) directed against 6-sulfo Lewis X, the asialo form of 6-sulfo sialyl Lewis X. The antibodies were not reactive to untreated HEV, but strongly reacted to sialidase-treated HEV. This indicated the predominance of the sialylated form of 6-sulfo sialyl Lewis X and minimal expression of its asialo form, corroborating that it was synthesized by fucosyltransferase VII, the isoenzyme that preferentially produces the sialylated form of the determinant.  相似文献   

16.
The substrate specificity and kinetic properties of a pure sialyltransferase from bovine colostrum have been examined. The transferase appears to incorporate sialic acid into the sequence, NeuAcalpha2 leads to 6Galbeta1 leads to 4GlcNAc, which is commonly found in glycoproteins. It has a strict substrate specificity for CMP-NeuAc and forms only the alpha2 leads to 6 sialyl linkage with beta-D-galactosides. N-Acetyllactosamine (Galbeta1 leads to 4GlcNAc) and asialo-glycoproteins containing the N-acetyllactosaminyl linkage at the nonreducing ends of the oligosaccharides prosthetic groups are the best acceptor substrates. Isomers of N-acetyllactosamine with beta1 leads to 3 or beta1 leads to 6 glycosidic linkages are less than 1% as effective as acceptor substates as the beta1 leads to 4-linked isomer. Lactose (Galbeta1 leads to 4Glc) is also a poor acceptor, indicating the importance of the 2-acetamido group in the N-acetylglucosaminyl residues. The unnatural substrate beta-methyl-L-arabinopyrano-side, a five-carbon analog of beta-methyl-D-galactoside which contains no 6-hydroxyl, also acts as a poor acceptor of the transferase and the sialylated product has been partially characterized. Kinetic properties of the enzyme in the presence and absence of inhibitors suggest that the transferase has an equilibrium random order mechanism.  相似文献   

17.
GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase (alpha1-6FucT; EC 2.4.1.68), which catalyzes the transfer of fucose from GDP-Fuc to N-linked type complex glycopeptides, was purified from a Triton X-100 extract of porcine brain microsomes. The purification procedures included sequential affinity chromatographies on GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-2Manalpha1- 2)Manbeta1-4GlcNAcbet a1-4GlcNAc-Asn-Sepharose 4B and synthetic GDP-hexanolamine-Sepharose 4B columns. The enzyme was recovered in a 12% final yield with a 440, 000-fold increase in specific activity. SDS-polyacrylamide gel electrophoresis of the purified enzyme gave a major band corresponding to an apparent molecular mass of 58 kDa. The alpha1-6FucT has 575 amino acids and no putative N-glycosylation sites. The cDNA was cloned in to pSVK3 and was then transiently transfected into COS-1 cells. alpha1-6FucT activity was found to be high in the transfected cells, as compared with non- or mock-transfected cells. Northern blotting analyses of rat adult tissues showed that alpha1-6FucT was highly expressed in brain. No sequence homology was found with other previously cloned fucosyltransferases, but the enzyme appears to be a type II transmembrane protein like the other glycosyltransferases.  相似文献   

18.
Core fucosylation of N-linked oligosaccharides (GlcNAcbeta1, 4(Fucalpha1,6)GlcNAcbeta1-Asn) is a common modification in animal glycans, but little is known about the distribution of core-fucosylated glycoproteins in mammalian tissues. Two monoclonal antibodies, CAB2 and CAB4, previously raised against carbohydrate epitopes of Dictyostelium discoideum glycoproteins (Crandall, I. E. and Newell, P. C. (1989) Development 107, 87-94), specifically recognize fucose residues in alpha1,6-linkage to the asparagine-bound GlcNAc of N-linked oligosaccharides. These IgG3 antibodies do not cross-react with glycoproteins containing alpha-fucoses in other linkages commonly seen in N- or O-linked sugar chains. CAB4 recognizes core alpha1,6 fucose regardless of terminal sugars, branching pattern, sialic acid linkage, or polylactosamine substitution. This contrasts to lentil and pea lectins that recognize a similar epitope in only a subset of these structures. Additional GlcNAc residues found in the core of N-glycans from dominant Chinese hamster ovary cell mutants LEC14 and LEC18 progressively decrease binding. These antibodies show that many proteins in human tissues are core-fucosylated, but their expression is localized to skin keratinocytes, vascular and visceral smooth muscle cells, epithelia, and some extracellular matrix-like material surrounding subpopulations of lymphocytes. The availability of these antibodies now allows for an extended investigation of core fucose epitope expression in development and malignancy and in genetically manipulated mice.  相似文献   

19.
Infectious Neisseria gonorrhoeae make relatively large lipooligosaccharides (LOS) that structurally resemble human glycosphingolipids. MS11mkC is an LOS variant of N. gonorrhoeae strain MS11 which was isolated from men at the onset of dysuria (Schneider, H., Griffiss, J. M., Boslego, J. W., Hitchcock, P. J., Zahos, K. M., and Apicella, M. A. (1991) J. Exp. Med. 174, 1601-1605). Delayed extraction matrix-assisted laser desorption and ionization and electrospray ionization mass spectrometry of O-deacylated MS11mkC LOS produced ions consistent with known LOS which have lacto-N-neotetraose (Galbeta1-->4GlcNAcbeta1-->3Galbeta1-->4Glc; paraglobosyl; monoclonal antibodies (mAbs) 1B2(+) and 06B4(+)) and GalNAc-->lacto-N-neotetraose (gangliosyl; mAb 1-1-M+) oligosaccharides. Ion peaks for a larger LOS which also bound mAb 1B2 indicated the addition of a hexose (+162 Da) to gangliosyl LOS or the addition of a hexose and a N-acetylhexosamine (+365 Da) to paraglobosyl LOS. Analysis of HF-treated and O-deacylated LOS revealed three major components present in a phosphoethanolamine (PEA)0 and a PEA1 series. Digestion of MS11mkC LOS by beta-N-acetylhexosaminidase and beta-galactosidase, alone and sequentially, combined with mAb binding patterns, confirmed the presence of a nonreducing terminal repeating LacNAc ((Galbeta1-->4GlcNAc)2) on the largest LOS, rather than a parallel oligosaccharide structure.  相似文献   

20.
Kidney transplant rejection is an inflammatory process characterized by lymphocyte infiltration. Our earlier observations have shown that peritubular capillary endothelium (PTCE) is the site of lymphocyte entry into the rejecting renal allograft. During rejection, PTCE begins to express sialyl Lewis x de novo, and binds lymphocytes by a mechanism largely dependent on L-selectin. Hence, inhibiting the lymphocyte-endothelial interaction with oligosaccharide ligands of L-selectin offers an attractive possibility to prevent the inflammation and rejection. Here, we report enzyme-assisted synthesis of N-acetyllactosamine-based tetra-, deca-, and docosameric saccharides carrying one, two or four distally located sialyl Lewis x groups [Neu-NAc alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc] (sLex), respectively. When tested for their ability to inhibit lymphocyte-endothelial interaction during rat kidney transplant rejection, all sLex-saccharides were inhibitors in the Stamper-Woodruff binding assays; the analogues lacking fucose showed no inhibitory potency. The tetravalent sLex glycan proved to be a high-affinity adhesion inhibitor with an IC50 < 50 nM. While less powerful than the tetravalent glycan, also the divalent sLex saccharide was a much better inhibitor than the monovalent glycan. Hence, increasing multivalency and, possibly, increasing chain length of the polylactosamine backbone, enhances the inhibitory potency of sLex bearing glycans in the lymphocyte-endothelial adhesion assay. This suggests that L-selectin behaves as a "functional oligomer" on lymphocyte surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号