首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific type of phospholipase A2 (PLA2) involved in formation of leukotriene B4 (LTB4) and platelet activating factor (PAF) in inflammatory cells has been controversial. In a recent report we characterized activation of the 'cytosolic' form of PLA2 (cPLA2) in human neutrophils (PMN) permeabilized with Staphylococcus aureus alpha-toxin under conditions where the secretory form of PLA2 (sPLA2) was inactive. In the current study, generation of both LTB4 and PAF in porated PMN are demonstrated. PMN, prelabeled with [3H]arachidonic acid (3H-AA, to assess AA release and LTB4 production) or with 1-O-[9',10'-3H]hexadecyl-2-lyso-glycero-3-phosphocholine (3H-lyso-PAF, for determination of lyso-PAF and PAF formation), were permeabilized with alpha-toxin in a 'cytoplasmic' buffer supplemented with acetyl CoA. Maximum production of both PAF and LTB4 required addition of 500 nM Ca2+, G-protein activation induced with 10 microM GTP gamma S, and stimulation with the chemotactic peptide, N-formyl-Met-Leu-Phe (FMLP, 1 microM); LTB4 production was confirmed by radioimmunoassay. Removal of acetyl CoA from the system had little effect on LTB4 generation but blocked PAF production with a concomitant increase in lyso-PAF formation LTB4 and PAF production occurred in parallel over time and at differing ATP and Ca2+ concentrations. Further work demonstrated that: (i) maximum production of both inflammatory mediators required a hydrolyzable form of ATP; (ii) blocking phosphorylation with staurosporin inhibited production of both; (iii) the reducing agent, dithiotreitol, had little affect on LTB4 formation but slightly enhanced PAF generation. This study clearly shows that cPLA2 activation can provide precursors for both LTB4 and PAF, that maximum PAF and LTB4 formation occur under conditions that induced optimal cPLA2 activation, that a close coupling between LTB4 and PAF formation exists, and that, after substrate generation, no additional requirements are necessary for LTB4 and PAF generation in the permeabilized PMN system.  相似文献   

2.
In the present investigation we studied the concerted role of superoxide anion, platelet activating factor (PAF) and leukotriene B4 (LTB4) in the mechanism that results in polymorphonuclear leucocyte accumulation induced by oxygen free radicals in rat pancreas. This was done by comparing the effects of a PAF antagonist (BN-52021), a LTB4 inhibitor (MK-886) and superoxide dismutase (SOD) in a experimental rat model of inflammation elicited by the oxygen free radicals induced via infusion of xanthine/xanthine oxidase. Also, the effect of independent LTB4 infusion has been studied. The results show that increases in polymorphonuclear cell infiltration (evaluated by tissue histology), myeloperoxidase and LTB4 levels induced in pancreas by infusion of xanthine/xanthine oxidase were abolished by the administration of either the PAF antagonist, the LTB4 inhibitor, or SOD. The fact that BN-52021 could prevent neutrophil recruitment and LTB4 synthesis suggests that PAF is a necessary step for subsequent LTB4 synthesis and polymorphonuclear leucocyte accumulation.  相似文献   

3.
The effects of leukotrienes (LT) and platelet activating factor (PAF) on DNA synthesis and proliferation of bovine cerebral microvascular smooth muscle cells (BCMSMC) were studied. At 100 pmol.L-1, LTB4, LTC4, LTD4, and PAF promoted the DNA synthesis by 44%, 50%, 48%, and 57%, and enhanced the cell proliferation by 33%, 47%, 27%, and 40%, respectively. Dauricine and anisodamine inhibited the DNA synthesis of the cells induced by LT and PAF (0.1-100 mumol.L-1). These results indicate the bright future of the 2 drugs in the prevention and treatment of cerebral vascular diseases.  相似文献   

4.
Experiments were designed to investigate whether leukotriene (LTB4) receptors can couple directly to phospholipase A2 (PLA2) in guinea pig eosinophils and the role of endogenous arachidonic acid (AA) in LTB4-induced activation of the NADPH oxidase. LTB4 (EC50 approximately 16 nM) and AA (EC50 approximately 6 microM) generated hydrogen peroxide (H2O2) in a concentration-dependent manner and at an equivalent maximum rate (5-6 nmol/min/10(6) cells). LTB4 stimulated PLA2 over a similar concentration range that activated the NADPH oxidase, although kinetic studies revealed that the release of [3H]AA (t1/2 approximately 2 s) preceded H2O2 generation (t1/2 > 30 s). Pretreatment of eosinophils with pertussis toxin abolished the increase in inositol(1,4,5)trisphosphate mass, [Ca2+]c, [3H]AA release, and H2O2 generation evoked by LTB4. Qualitatively identical results were obtained in eosinophils in which phospholipase C (PLC) was desensitized by 4beta-phorbol 12,13-dibutyrate with the exception that [3H]AA release was largely unaffected. Additional studies performed with the protein kinase C inhibitor, Ro 31-8220, and under conditions in which Ca2+ mobilization was abolished, provided further evidence that LTB4 released [3H]AA independently of signal molecules derived from the hydrolysis of phosphatidylinositol(4,5)bisphosphate by PLC. Pretreatment of eosinophils with the PLA2 inhibitor, mepacrine, abolished LTB4-induced [3H]AA release at a concentration that inhibited H2O2 by only 36%. Collectively, the results of this study indicate that agonism of LTB4 receptors on guinea pig eosinophils mobilizes AA by a mechanism that does not involve the activation of PLC. In addition, although LTB4 effectively stimulated PLA2, a central role for AA in the activation of the NADPH oxidase was excluded.  相似文献   

5.
Platelet-activating factor (PAF) production is carefully controlled in inflammatory cells. The specific removal of arachidonate (AA) from 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC), thought to be mediated by CoA-independent transacylase (CoA-IT), is required to generate the PAF precursor 1-O-alkyl-2-lyso-GPC in human neutrophils. Exposure of A23187-stimulated human monocytes to the CoA-IT inhibitors SK&F 98625 and SK&F 45905 inhibited PAF formation (IC50s of 10 and 12 microM, respectively), indicating that these cells also need CoA-IT activity for PAF production. Because CoA-IT activity transfers arachidonate to a 2-lyso phospholipid substrate, its activity is obligated to an sn-2 acyl hydrolase to form the 2-lyso phospholipid substrate. SB 203347, an inhibitor of 14 kDa phospholipase A2 (PLA2), and AACOCF3, an inhibitor of 85 kDa PLA2, both inhibited AA release from A23187-stimulated human monocytes. However, AACOCF3 had no effect on A23187-induced PAF formation at concentrations as high as 3 microM. Further, depletion of 85 kDa PLA2 using antisense (SB 7111, 1 microM) had no effect on PAF production, indicating a lack of a role of 85 kDa PLA2 in PAF biosynthesis. Both SB 203347 and the 14 kDa PLA2 inhibitor scalaradial blocked PAF synthesis in monocytes (IC50s of 2 and 0.5 microM, respectively), suggesting a key role of 14 kDa PLA2 in this process. Further, A23187-stimulated monocytes produced two forms of PAF: 80% 1-O-alkyl-2-acetyl-GPC and 20% 1-acyl-2-acetyl-GPC, which were both equally inhibited by SB 203347. In contrast, inhibition of CoA-IT using SK&F 45905 (20 microM) had a greater effect on the production of 1-O-alkyl (-80%) than of 1-acyl (-14%) acetylated material. Finally, treatment of U937 cell membranes with exogenous human recombinant (rh) type II 14 kDa PLA2, but not rh 85 kDa PLA2, induced PAF production. Elimination of membrane CoA-IT activity by heat treatment impaired the ability of 14 kDa PLA2 to induce PAF formation. Taken together, these results suggest that a 14 kDa PLA2-like activity, and not 85 kDa PLA2, is coupled to monocyte CoA-IT-induced PAF production.  相似文献   

6.
The goal of this study was to explain the priming effect of lipopolysaccharides (LPS) in human polymorphonuclear leukocytes on leukotriene B4 (LTB4) biosynthesis after stimulation with the receptor-mediated agonist formyl-methionyl-leucyl-phenylalanine (fMLP). This priming effect for LTB4 biosynthesis was maximal after a 30 min preincubation with LPS but was lost when incubations were extended to 90 min or longer. Priming with LPS resulted in an enhanced maximal activation of 5-lipoxygenase (5- to15-fold above unprimed cells) as well as a prolonged activation of the enzyme after stimulation with fMLP compared to that measured in unprimed cells. The activation of 5-lipoxygenase was associated with its translocation to the nuclear fraction of the cell after stimulation of LPS-primed cells but not of unprimed cells. Priming of cells with LPS also resulted in an enhanced capacity (fivefold increase) for arachidonic acid (AA) release after stimulation with fMLP compared to unprimed cells as measured by mass spectrometry. This release of AA was very efficiently blocked in a dose-dependent manner by the 85 kDa cytosolic phospholipase A2 (PLA2) inhibitor MAFP (IC50=10nM) but not by the 14 kDa secretory PLA2 inhibitor SB 203347 (up to 5 microM), indicating that the 85 kDa cPLA2 is the PLA2 responsible for AA release in response to receptor-mediated agonists. In accord with inhibitor studies, the LPS-mediated phosphorylation of cPLA2 followed the same kinetics as the priming for AA release, and a measurable fMLP-induced translocation of cPLA2 was observed only in primed cells. As with AA release and LTB4 biosynthesis, both the phosphorylation and capacity to translocate cPLA2 were reversed when the preincubation period with LPS was extended to 120 min. These results explain some of the cellular events responsible for the potentiation and subsequent decline of functional responses of human polymorphonuclear leukocytes recruited to inflammatory foci.  相似文献   

7.
The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively. PMA at 1 microM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%. Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCbeta) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA. Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%. Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production. The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane. Western blot analysis revealed the presence of eight PKC isoforms (alpha, betaI, betaII, delta, epsilon, mu, lambda and xi) in RAW 264.7 cells and PMA was shown to induce the translocation of the alpha, betaI, betaII, delta, epsilon and mu isoforms from the cytosol to the cell membrane within 2 min. Pretreatment of cells with PMA for 2-24 h resulted in a time-dependent down-regulation of PKCalpha, betaI, betaII, and delta expression, while the levels of the other four PKC isozymes were unchanged after PMA treatment for 24 h. A decrease in the potentiation of AA release by PMA was observed, concomitant with the time-dependent down-regulation of PKC. These results indicate that PKCbeta has a crucial role in the mediation of cPLA2 activation by the phorbol ester PMA, whereas PMA utilizes PKC epsilon and/or mu to up-regulate AC activity.  相似文献   

8.
Phospholipase A2 (PLA2) plays crucial roles in diverse cellular responses, including phospholipid digestion and metabolism, host defense and signal transduction. PLA2 provides precursors for generation of eicosanoids, such as prostaglandins (PGa) and leukotrienes (LTs), when the cleaved fatty acid is arachidonic acid, platelet-activating factor (PAF) when the sn-1 position of the phosphatidylcholine contains an alkyl ether linkage and some bioactive lysophospholipids, such as lysophosphatidic acid (lysoPA). As overproduction of these lipid mediators causes inflammation and tissue disorders, it is extremely important to understand the mechanisms regulating the expression and functions of PLA2. Recent advances in molecular and cellular biology have enabled us to understand the molecular nature, possible function, and regulation of a variety of PLA2 isozymes. Mammalian tissues and cells generally contain more than one enzyme, each of which is regulated independently and exerts distinct functions. Here we classify mammalian PLA2s into there large groups, namely, secretory (sPLA2), cytosolic (cPLA2), and Ca(2+)-independent PLA2s, on the basis of their enzymatic properties and structures and focus on the general understanding of the possible regulatory functions of each PLA2 isozyme. In particular, the roles of type II sPLA2 and cPLA2 in lipid mediator generation are discussed.  相似文献   

9.
Lipid bodies, lipid rich cytoplasmic inclusions, are characteristically abundant in vivo in leukocytes associated with inflammation. Because lipid bodies are potential reservoirs of esterified arachidonate and sites at which eicosanoid-forming enzymes may localize, we evaluated mechanisms of lipid body formation in neutrophils (PMN). Among receptor-mediated agonists, platelet activating factor (PAF), but not C5a, formyl-methyl-phenylalanine, interleukin 8, or leukotriene (LT) B4, induced the rapid formation of lipid bodies in PMN. This action of PAF was receptor mediated, as it was dose dependently inhibited by the PAF receptor antagonist WEB 2086 and blocked by pertussis toxin. Lipid body induction by PAF required 5-lipoxygenase (LO) activity and was inhibited by the 5-lipoxygenase-activating protein antagonist MK 886 and the 5-LO inhibitor zileuton, but not by cyclooxygenase inhibitors. Corroborating the dependency of PAF-induced lipid body formation on 5-LO, PMN and macrophages from wild-type mice, but not from 5-LO genetically deficient mice, formed lipid bodies on exposure to PAF both in vitro and in vivo within the pleural cavity. The 5-LO product inducing lipid body formation was not LTB4 but was 5(S)-hydroxyeicosatetraenoic acid [5(S)-HETE], which was active at 10-fold lower concentrations than PAF and was also inhibited by pertussis toxin but not by zileuton or WEB 2086. Furthermore, 5-HETE was equally effective in inducing lipid body formation in both wild-type and 5-LO genetically deficient mice. Both PAF- and 5(S)-HETE-induced lipid body formation were inhibited by protein kinase C (PKC) inhibitors staurosporine and chelerythrine, the phospholipase C (PLC) inhibitors D609 and U-73122, and by actinomycin D and cycloheximide. Prior stimulation of human PMN with PAF to form lipid bodies enhanced eicosanoid production in response to submaximal stimulation with the calcium ionophore A23187; and the levels of both prostaglandin (PG) E2 and LTB4 correlated with the number of lipid bodies. Furthermore, pretreatment of cells with actinomycin D or cycloheximide inhibited not only the induction of lipid body formation by PAF, but also the PAF-induced "priming" for enhanced PGE2 and LTB4 in PMN. Thus, the compartmentalization of lipids to form lipid bodies in PMN is dependent on specific cellular responses that can be PAF receptor mediated, involves signaling through 5-LO to form 5-HETE and then through PKC and PLC, and requires new protein synthesis. Since increases in lipid body numbers correlated with priming for enhanced PGE2 and LTB4 production in PMN, the induction of lipid bodies may have a role in the formation of eicosanoid mediators by leukocytes involved in inflammation.  相似文献   

10.
Recent studies have shown that long-term in vivo exposure of dogs to neutral sulfur(IV)/sulfite aerosols induces mild inflammatory reactions, whereas the combination of neutral sulfite with acidic sulfur(VI)/sulfate aerosols evokes less pronounced effects. To understand underlying mechanisms, we studied in vitro the role of lipid mediators in the responses of alveolar macrophages (AMs) to sulfur-related compounds under neutral (pH 7) or moderate acidic (pH 6) conditions. Canine AMs incubated with sulfite at pH 7 released threefold higher amounts of platelet-activating factor than control (P < 0.005). Generation of arachidonic acid, leukotriene B4, 5-hydroxy-eicosatetraenoic acid, prostaglandin E2, thromboxane B2 and 12-hydroxyheptadecatrienoic acid increased twofold (P < 0.0005). However, these metabolites remained unchanged following incubation of AMs with sulfite at pH 6 or with sulfate at pH 7 or pH 6. Mediator release by sulfite-treated AMs at pH 7 stimulated respiratory burst activity of neutrophils. Inhibition of MAPK pathway by PD 98059, of cytosolic (cPLA2) and secretory phospholipases A2 by AACOCF3 and thioetheramide-PC, respectively, reduced sulfite-induced eicosanoid formation in AMs. Sulfite activated cPLA2 activity twofold at pH 7. This mechanism of sulfite-stimulated responses in phospholipid metabolism predicts that chronic exposure to sulfur(IV)/sulfite is associated with a considerable health risk.  相似文献   

11.
BACKGROUND: Leukotriene (LT) and thromboxane A2 (TXA2) receptor antagonists have been used in the treatment of asthma. OBJECTIVES: We examined the effects of an LT receptor antagonist, TXA2 receptor antagonist, and TXA2 synthetase inhibitor on bronchoprovocation test (BPT) in patients with mild-to-moderate atopic asthma. METHODS: BPT was performed four times in each of six asthmatics. Development of the immediate asthmatic reaction (IAR) and late asthmatic reaction (LAR) was confirmed on the first BPT (BPT1). After a 7-day washout period, an LT receptor antagonist (pranlukast, 450 mg/d), TXA2 receptor antagonist (seratrodast, 80 mg/d), or TXA2 synthetase inhibitor (ozagrel, 800 mg/d) was administered orally over 7 days at random using a cross-over method (BPT2-4). Blood levels of LTB4, LTC4, LTD4, 11-dehydrothromboxane B2, eosinophil cationic protein, and histamine were measured at reaction phases of pre-BPT, IAR, and LAR. RESULTS: Administration of pranlukast suppressed IAR by 80.5% (p < 0.0001) and LAR by 54.6% (p = 0.0391). Ozagrel significantly suppressed IAR by 39.5% (p = 0.0413), but the fall in FEV1 was >20% (21.56+/-4.173%). Seratrodast did not suppress IAR or LAR. Blood levels of chemical mediators did not correlate with the suppressive effects of the tested drugs. CONCLUSIONS: The LT receptor antagonist was considered to be the most effective. LT might play a more important role in the pathogenesis of asthma than TXA2. Our data showed that measurement of blood levels of chemical mediators is not useful in identifying the pathogenic mechanisms of asthma.  相似文献   

12.
We have recently shown that modified natural pulmonary surfactant Curosurf inhibits the synthesis of type II phospholipase A2 (sPLA2-II) by cultured guinea-pig alveolar macrophages (AM). The goal of the present study was to identify the surfactant components and the mechanisms involved in this process. We show that protein-free artificial surfactant (AS) mimicked the inhibitory effect of Curosurf, suggesting that phospholipid components of surfactant play a role in the inhibition of sPLA2-II expression. Among surfactant phospholipids, dioleylphosphatidylglycerol (DOPG) was the most effective in inhibiting the synthesis of sPLA2-II. By contrast, the concentrations of platelet-activating factor (PAF)-acetylhydrolase and lysophospholipase activities remained unchanged, indicating that inhibition of sPLA2-II synthesis was caused by a specific effect of surfactant. The effect of DOPG on sPLA2-II synthesis was concentration-dependent and was accompanied by a rapid and time-dependent uptake of DOPG by AM whereas dipalmitoylphosphatidylcholine (DPPC) was only marginally taken up. Curosurf, AS, and DOPG inhibited tumor necrosis factor-alpha (TNF-alpha) secretion, a key step in the induction of sPLA2-II synthesis by AM, in contrast to DPPC which had only a marginal effect. We conclude that phospholipid components, especially DOPG, play a major role in the inhibition of sPLA2-II synthesis by surfactant and that this effect can be explained, at least in part, by an impairment of TNF-alpha secretion.  相似文献   

13.
Human alveolar macrophages (AM) can produce potent reactive oxygen intermediates (ROI) and arachidonic acid metabolites (eicosanoids), which have important roles in host defense and the pathogenesis of some diseases of the lung. Bacterial lipopolysaccharide (LPS) is believed to cause profound lung injury and can prime mouse peritoneal macrophages for the enhanced secretion of ROI and eicosanoids. Therefore, we investigated the effect of LPS pretreatment on the ability of AM to release superoxide anions (O2-) and leukotriene B4 (LTB4). LPS can prime AM for the enhanced secretion of O2- and LTB4, regardless of whether they are derived from nonsmokers or smokers. Moreover, judging from the time-response characteristics, this priming for LTB4 release could be inhibited in the later stages of pretreatment, when the O2(-)-releasing capacity was enhanced. The priming inhibition was prevented, at least in part, by cycloheximide, but not by SOD and/or catalase. In addition, cycloheximide also inhibited the priming for O2- release. Hence, protein synthesis might be necessary for the priming for O2- release and for inhibiting the priming for LTB4 release. This phenomenon of self-limiting the priming response with LPS seems to be very important when we consider the high oxygen tension in the lungs and the many bacterial substances inspired into alveoli.  相似文献   

14.
15.
Fas-mediated apoptosis of human leukemic U937 cells was accompanied by increased arachidonic acid (AA) and oleic acid release from membrane glycerophospholipids, indicating phospholipase A2 (PLA2) activation. During apoptosis, type IV cytosolic PLA2 (cPLA2), a PLA2 isozyme with an apparent molecular mass of 110 kDa critical for stimulus-coupled AA release, was converted to a 78-kDa fragment with concomitant loss of catalytic activity. Cleavage of cPLA2 correlated with increased caspase-3-like protease activity in apoptotic cells and was abrogated by a caspase-3 inhibitor. A mutant cPLA2 protein in which Asp522 was replaced by Asn, which aligns with the consensus sequence of the caspase-3 cleavage site (DXXD downward arrowX), was resistant to apo-ptosis-associated proteolysis. Moreover, a COOH-terminal deletion mutant of cPLA2 truncated at Asp522 comigrated with the 78-kDa fragment and exhibited no enzymatic activity. Thus, caspase-3-mediated cPLA2 cleavage eventually leads to destruction of a catalytic triad essential for cPLA2 activity, thereby terminating its AA-releasing function. In contrast, the activity of type VI Ca2+-independent PLA2 (iPLA2), a PLA2 isozyme implicated in phospholipid remodeling, remained intact during apoptosis. Inhibitors of iPLA2, but neither cPLA2 nor secretory PLA2 inhibitors, suppressed AA release markedly and, importantly, delayed cell death induced by Fas. Therefore, we conclude that iPLA2-mediated fatty acid release is facilitated in Fas-stimulated cells and plays a modifying although not essential role in the apoptotic cell death process.  相似文献   

16.
Phospholipase A2 (PLA2) is a group of secretory as well as intracellular enzymes that release phospholipids as an early step in inflammation and play a physiologic role in digestion. In humans, the group of secretory, low-molecular-weight PLA2 (sPLA2) is differentiated from the cytosolic, high-molecular-weight PLA2 (cPLA2). The two known cPLA2 mediate the intracellular response to inflammation by releasing arachidonic acid from membrane phospholipids. Secretory pancreatic PLA2 (sPLA2-I) is a digestive zymogen secreted from pancreatic acinar cells in its inactive form. Activated by trypsin in the duodenum, it is an important digestive enzyme. In acute pancreatitis, circulating sPLA2-I indicates pancreatic injury but is mostly inactive. Synovial-type secretory PLA2 (sPLA2-II), first isolated from synovial fluid of arthritis patients, is increased in inflammation, after surgery or trauma, and in various inflammatory diseases. Unlike sPLA2-I, its catalytic activity is held responsible for mediating the systemic inflammatory reaction and its complications by regulating the synthesis of prostaglandins, leukotrienes and platelet activating factor. Clinically, sPLA2-II offers new possibilities as an early marker for severe inflammation and predicting systemic complications in severely ill patients.  相似文献   

17.
Arachidonic acid (AA) can trigger activation of the phagocyte NADPH oxidase in a cell-free assay. However, a role for AA in activation of the oxidase in intact cells has not been established, nor has the AA generating enzyme critical to this process been identified. The human myeloid cell line PLB-985 was transfected to express p85 cytosolic phospholipase A2 (cPLA2) antisense mRNA and stable clones were selected that lack detectable cPLA2. cPLA2-deficient PLB-985 cells differentiate similarly to control PLB-985 cells in response to retinoic acid or 1,25-dihydroxyvitamin D3, indicating that cPLA2 is not involved in the differentiation process. Neither cPLA2 nor stimulated [3H]AA release were detectable in differentiated cPLA2-deficient PLB-985 cells, demonstrating that cPLA2 is the major type of PLA2 activated in phagocytic-like cells. Despite the normal synthesis of NADPH oxidase subunits during differentiation of cPLA2-deficient PLB-985 cells, these cells fail to activate NADPH oxidase in response to a variety of soluble and particulate stimuli, but the addition of exogenous AA fully restores oxidase activity. This establishes an essential requirement of cPLA2-generated AA for activation of phagocyte NADPH oxidase.  相似文献   

18.
Leukotrienes (LT) are inflammatory mediators which can also exert regulatory effects on human myelopoiesis. We have studied the LT-producing capacity of freshly isolated leucocyte suspensions (containing blast cells in variable proportions) from 41 patients with acute myeloid leukaemia (AML) or chronic myeloid leukaemia (CML) in blast crisis (CMLbc) at diagnosis or relapse/resistant disease. Leucocyte suspensions from 19/29 AML patients (66%), and 2/12 CMLbc patients (17%; P = 0.012) demonstrated deficient capacity to synthesize LT from endogenous substrate after ionophore A23187 stimulation. Thus, these cells produced < 8 pmol LTB4+LTC4/10(6) cells (< 20% of mean LT formation in leucocyte suspensions from 18 healthy subjects). Addition of exogenous arachidonic acid did not normalize the LT synthesis in poor-producing cell suspensions. Purified, morphologically mature granulocytes from two AML patients also failed to produce normal amounts of LT. In leucocyte suspensions from the remaining 20 AML/CMLbc patients A23187 provoked LT biosynthesis, with markedly increased production of LTC4, but decreased LTB4 formation. Furthermore, elevated conversion of exogenous LTA4 to LTC4 was noted in the patient samples, independent of their capacity to produce LT after A23187 stimulation. The percentage of blast cells in patient white blood cell differential counts correlated inversely with ionophore-induced LT synthesis, but positively with the conversion of exogenous LTA4 to LTC4. The results suggest elevated LTC4 synthase activity and suppressed 5-lipoxygenase activity as novel enzymatic features of myeloid leukaemia patients with immature phenotype.  相似文献   

19.
We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway.  相似文献   

20.
We have shown previously that both 1,2-diacylglycerol (AAG) and 1-O-alkyl-2-acylglycerol (EAG) prime neutrophil release of arachidonic acid via uncharacterized phospholipases A2. Therefore, we investigated the actions of EAG and AAG specifically on neutrophil cytosolic (cPLA2) and secretory (sPLA2) phospholipase A2s. We hypothesized that AAG as a protein kinase activator would activate cPLA2 via phosphorylation events. EAG is antagonistic to the AAG activation of PKC, thus it was not expected to act via phosphorylation of cPLA2. Neutrophils were primed with either AAG or EAG and then stimulated with fMLP. When neutrophils were primed with 5-20 microM 1,2-diacylglycerol, a shift was observed in cPLA2 migration on SDS-PAGE gels, consistent with phosphorylation of the protein. This gel shift was not seen after exposure to EAG. AAG also caused a parallel increase in enzymatic activity of cPLA2 that was not seen with EAG. We also investigated whether either diglyceride would cause similar priming or direct secretion of sPLA2. Both AAG and EAG directly caused significant secretion of neutrophil sPLA2. EAG also increased the release of sPLA2 in cells subsequently stimulated with fMLP. Thus, AAG activated cPLA2 and stimulated secretion of sPLA2. In contrast, EAG did not activate cPLA2, but directly activated secretion of sPLA2. We also demonstrated that human synovial fluid sPLA2 increased AA release from resting and fMLP-stimulated neutrophils. Given that diglycerides prime for release of AA, PAF, and LTB4, these current data support the hypothesis that such priming may be mediated by phosphorylation dependent (cPLA2) or phosphorylation independent (e.g. secretion of sPLA2) events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号