首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel, effective, and economically heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were characterized through several analyses including the X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller specific surface area. These revealed the best catalyst for the investigated reaction among different ones prepared based upon various impregnation extent of the potassium carbonate. The influence of this parameter was examined through a comparison of the catalytic activity of differently produced catalysts. The impregnation amount of 20 wt% K2CO3 upon the kaolin achieved the highest catalytic activity attributed to its highest basicity. To expand upon the efficiency of transesterification, such reaction parameters including the molar ratio between methanol and oil, reactor loading of the catalyst, and time duration of the reaction were optimized. The highest yield of biodiesel over the K2O/kaolin catalyst was around 95.3 ± 1.2%, which was achieved using the kaolin support impregnated with 20 wt% of K2CO3 under optimum reaction conditions of the catalyst, reactor loading of 5 wt%, reaction temperature of 65 °C, methanol:oil molar ratio of 6:1, and reaction duration time of 4 hours. Ultimately, this optimized catalyst was demonstrated to successfully withstand the aforementioned optimum criteria up to five consecutive reaction cycles while experiencing a rather negligible loss of about 10% of its activity.  相似文献   

2.
KF-impregnated nanoparticles of γ-Al2O3 were calcinated and used as heterogeneous catalysts for the transesterification of vegetable oil with methanol for the synthesis of biodiesel (fatty acid methyl esters, FAME). The ratio of KF to nano-γ-Al2O3, calcination temperature, molar ratio of methanol/oil, transesterification reaction temperature and time, and the concentration of the catalyst were used as the parameters of the study. A methyl ester yield of 97.7 ± 2.14% was obtained under the catalyst preparation and transesterification conditions of KF loading of 15 wt%, calcination temperature of 773 K, 8 h of reaction time at 338 K, and using 3 wt% catalysts and molar ratio of methanol/oil of 15:1. This relatively high conversion of vegetable oil to biodiesel is considered to be associated with the achieved relatively high basicity of the catalyst surface (1.68 mmol/g) and the high surface to volume ratio of the nanoparticles of γ-Al2O3.  相似文献   

3.
Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the three important reaction variables — methanol/oil molar ratio (x1), reaction time (x2) and amount of catalyst (x3) for production of biodiesel from palm oil using KF/ZnO catalyst. Based on the CCD, a quadratic model was developed to correlate the reaction variables to the biodiesel yield. From the analysis of variance (ANOVA), the most influential factor on the experimental design response was identified. The predicted yield after process optimization was found to agree satisfactory with the experimental value. The optimum conditions for biodiesel production were found as follows: methanol/oil ratio of 11.43, reaction time of 9.72 h and catalyst amount of 5.52 wt%. The optimum biodiesel yield was 89.23%.  相似文献   

4.
Here we investigate the production and characterization of mono‐acylglycerols through the glycerolysis of biodiesel, a methyl ester mixture, obtained from linseed oil. The biodiesel employed was derived from linseed oil through transesterification according to transesterification double step process 1 . The efficiency of H2SO4, CaO, and NaOH as catalysts was evaluated for the production of mono‐acylglycerols. The glycerolysis reactions were performed by varying the molar ratio of the reagents (biodiesel:glycerol), the type and amount of catalyst, reaction time and temperature. Systematic evaluation of reaction yield is shown as a function of these parameters. Reaction products were characterized through IR spectroscopy, hydrogen NMR, and the GC techniques. The study of three different catalysts indicated that the most efficient was 5% NaOH in a 1:5 biodiesel–glycerol molar ratio with 10 h reaction time. The reaction reached a maximum of 85% biodiesel conversion with a mono‐acylglycerol yield of 72% at 130°C.  相似文献   

5.
Sodium silicate and that calcined at 400 °C for 2 h were used to catalyze the transesterification of cottonseed oil with methanol. Calcined sodium silicate(CSS) catalyst exhibited much higher catalytic activity and stability. A maximum biodiesel yield of 98.9% was achieved at methanol/oil mole ratio of 12:1, reaction temperature65 °C, reaction time 3.0 h, and CSS/oil mass ratio of 2 wt%. After 7 consecutive reactions without any treatment,biodiesel yield reduced to 82.5%. Considering technological and economic feasibility, CSS base catalyst supported on θ rings was prepared for continuous transesterification. The maximum yield was 99.1% under optimum conditions(reaction temperature 55 °C, methanol velocity 1 ml·min-1, oil velocity 3 ml·min-1, and 5 tower sections). These results indicate that this new continuous biodiesel production process and apparatus present a great potential for industrial application in biodiesel.  相似文献   

6.
The transesterification reaction of soybean oil with methanol over kalsilite-based heterogeneous catalysts was investigated. The kalsilite was synthesized from potassium silicate, potassium hydroxide, and aluminum nitrate aqueous solutions by controlling the pH value at 13. After calcination in air at 1200°C, a very porous kalsilite (KAlSiO4) was obtained with surface pores ranging from 0.2 to 1.0 μm. However, this kalsilite had relatively low catalytic activity for the transesterification reaction. A biodiesel yield of 54.4% and a kinematic viscosity of 7.06 cSt were obtained at a high reaction temperature of 180°C in a batch reactor. The catalytic activity of kalsilite was significantly enhanced by introducing a small amount of lithium nitrate in the impregnation method. A biodiesel yield of 100% and a kinematic viscosity of 3.84 cSt were achieved at a temperature of only 120°C over this lithium modified catalyst (2.3 wt-% Li). The test of this lithium modified catalyst in pellet form in a laboratory-scale fixed-bed reactor showed that it maintained a stable catalytic performance with a biodiesel yield of 100% over the first 90 min.  相似文献   

7.
An environmentally benign process for the production of methyl ester using γ-alumina supported heterogeneous base catalyst in sub- and supercritical methanol has been developed. The production of methyl ester in refluxed methanol conventionally utilized double promoted γ-alumina heterogeneous base catalyst (CaO/KI/γ-alumina); however, this process requires a large amount of catalyst and a long reaction time to produce a high yield of methyl ester. This study carries out methyl ester production in sub- and supercritical methanol with the introduction of an optimized catalyst used in the previous work for the purpose of improving the process and enhancing efficiency. CaO/KI/γ-Al2O3 catalyst was prepared by precipitation and impregnation methods. The effects of catalyst amount, reaction temperature, reaction time, and the ratio of oil to methanol on the yield of biodiesel ester were studied. The reaction was carried out in a batch reactor (8.8 ml capacity, stainless steel, AKICO, Japan). Results show that the use of CaO/KI/γ-Al2O3 catalyst effectively reduces both reaction time and required catalyst amount. The optimum process conditions were at a temperature of 290 °C, ratio of oil to methanol of 1:24, and a catalyst amount of 3% over 60 min of reaction time. The highest yield of biodiesel obtained under these optimum conditions was almost 95%.  相似文献   

8.
硝酸镧改性钙镁锌催化剂制备生物柴油   总被引:1,自引:0,他引:1  
通过掺杂不同比例的硝酸镧实现对钙镁锌三金属氧化物固体碱催化剂的改性,对改性催化剂用于制备生物柴油的工艺条件的了优化,并通过SEM的方法对改性催化剂的表面结构进行表征。结果表明硝酸镧的加入可以降低钙镁锌三金属氧化物固体碱催化剂最适催化温度并减少催化剂用量。添加3%(质量分数)的硝酸镧的改性钙镁锌体系催化剂,在反应温度为50℃时,醇油摩尔比为15∶1,反应时间为1h时,生物柴油产率可达到86.8%。这种改性催化剂更适于工业化应用。  相似文献   

9.
In recent years, vegetable oils, as renewable raw materials, became a promising feedstock for chemicals and biodiesel production. The main products derived from oils are esters of fatty acids, especially methyl esters, obtained by their transesterification with methanol, in presence of acid or alkaline catalysts. The use of such catalysts implies the need for washing operations, which leads to environmental pollution. In the present paper, the response surface methodology based on a central composite design, has been developed to optimize the process of transesterification of corn oil. Ba(OH)2 in presence of diethyl ether was used as catalyst. A quadratic polynomial equation was obtained. It correlates the reaction parameters [methanol/oil molar ratio (x r), reaction time (x t) and catalyst concentration (x c)] with methyl esters yield. Analysis of variance analysis showed that only methanol/oil molar ratio and catalyst concentration have had the most significant influences on the conversion. The maximum methyl esters yield was obtained using the following optimum parameters: methanol/corn oil ratio of 11.32, reaction time of 118 min and catalyst concentration of 3.6 wt%.  相似文献   

10.
Due to decreasing oil resources, alternative fuels such as biodiesel are required. The nanomagnetic catalyst CaO/NaY‐Fe3O4 was synthesized and used for biodiesel production from canola oil. The structure of the catalysts was characterized by X‐ray diffraction, field emission scanning electron microscopy, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, and vibrating sample magnetometer method. To optimize the influence of the operating variables, such as the methanol/canola oil molar ratio, the amount of catalyst, and the reaction time, on the yield of transesterification reaction, an experimental design was applied based on the Box‐Behnken method. The optimum values of these variables were predicted by the cubic model and were in excellent agreement with the experimental results.  相似文献   

11.
Xinhai Yu  Zhenzhong Wen  Shan-Tung Tu 《Fuel》2011,90(5):1868-1874
This study investigates the use of CaO-CeO2 mixed oxides as solid base catalysts for the transesterification of Pistacia chinensis oil with methanol to produce biodiesel. These CaO-CeO2 mixed-oxide catalysts were prepared by an incipient wetness impregnation method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The cerium improved the heterogeneous catalytic stability remarkably due to the defects induced by the substitution of Ca ions for Ce ions on the surface. The best catalyst was determined to be C0.15-973 (with a Ce/Ca molar ratio of 0.15 and having been calcined at 973 K), considering its catalytic and anti-leaching abilities. The effects of reaction parameters such as the methanol/oil molar ratio, the amount of catalyst amount and the reaction temperature were also investigated. For the C0.15-973 regenerated after five reuses, the biodiesel yield was 91%, which is slightly less than that of the fresh sample. The test results revealed that the CaO-CeO2 mixed oxides have good potential for use in the large-scale biodiesel production.  相似文献   

12.
In this research a new heterogeneous catalyst has been prepared for biodiesel production. The catalyst was prepared by sulfonating industrial sugar waste. Unlike homogeneous catalysts, which require further purification and separation from the biodiesel production reaction media, this inexpensive synthetic catalyst does not need to go through an additional separation process. This advantage consequently minimizes the total application costs. The catalyst was prepared by partially carbonizing sugar beet pulp at 400 °C. The carbonization product was then sulfonated with concentrated H2SO4 vapor in order to produce a solid catalyst. The prepared catalyst was used in the esterification reaction between palm fatty acid distillate (PFAD) and methanol. The effects of the temperature, methanol/PFAD ratio, reaction time and catalyst dosage on the efficiency of the production were individually investigated. The optimum biodiesel production occurred at 85 °C, a reaction time of 300 min, catalyst dosage of 3 g and methanol/PFAD ratio of 5:1 (mol/mol), lowering the acid value from 198 to 13.1 (mg KOH/g oil) or the equivalent, with a fatty acid methyl ester yield of around 92 %. The results suggest that the synthesized inexpensive catalyst is useful for biodiesel production from PFAD.  相似文献   

13.
In this study, utilization of waste marble slurry (MS) as an eco‐friendly and low‐cost heterogeneous catalyst is introduced for biodiesel production from soybean oil. Catalytic transesterification reaction was done to convert biodiesel from soybean oil using Marble slurry (MS) derived calcined marble slurry (CMS), and hydroxyapatite (HAP) as a heterogeneous catalyst. Marble slurry derived catalysts were characterized by XRD, FTIR, SEM, and TGA with elemental analysis. Hammett indicator method and ion exchange method were also used to verify catalytic activities of the catalysts. The HAP provided the better biodiesel yield of 94 ± 1 % with the highest basicity (13.30 mmol/g) and basic strength than CMS under optimized reaction conditions: reaction temperature 65 °C; reaction time 3 h; methanol/oil molar ratio 9:1; and catalyst concentration 6 wt%. Reusability tests provide confirmation about the stability of the catalyst and slight fluctuations in catalytic activity and biodiesel yield when used up to five runs.
  相似文献   

14.
酯交换法制备生物柴油研究进展   总被引:1,自引:0,他引:1  
综述了酯交换法制备生物柴油的国内外重要研究进展,总结了超临界体系、生物酶催化体系、均相催化体系和非均相催化体系制备生物柴油的研究成果,重点讨论了不同催化剂和实验条件对酯交换反应速率和生物柴油产率的影响,分析了不同反应体系存在的一些关键问题,并对酯交换法制备生物柴油的研究方向进行了展望。  相似文献   

15.
Magnetic solid base catalysts were prepared by loading Na2SiO3 on Fe3O4 nano-particles with Na2O·3SiO2 and NaOH as precipitator. The catalysts were used to catalyze the transesterification reactions for the production of fatty acid methyl esters (FAME, namely biodiesel) from cottonseed oil. The optimum conditions of the catalysts' preparation and transesterification reactions were investigated by orthogonal experiments. The catalyst with the highest catalytic activity was obtained when Si/Fe molar ratio of 2.5, aging time of 2 h, calcination temperature of 350 °C, calcination time of 2.5 h. Magnetic of the catalyst was characterized with Vibrating Sample Magnetometer (VSM) and transmission electron microscopy photograph (TEM), and the results showed the catalyst Na2SiO3/Fe3O4 had good specific saturation magnetization and paramagnetism, and its water resistance was better than the traditional homogeneous base catalysts; under the transesterification conditions of methanol/oil molar ratio of 7:1, catalyst dosage of 5%, reaction temperature of 60 °C, reaction time of 100 min and stirring speed of 400 rpm, yield of biodiesel was 99.6%. The lifetime and recovery rate of the magnetic solid base catalyst were much better than those of Na2SiO3.  相似文献   

16.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature.  相似文献   

17.
Activated carbon was obtained by hydrothermal process using rice husk as raw materials. The study in our lab had been developed to produce high-quality biodiesel from soybean oil with the activated carbon-base catalyst. The polyethylene glycol (PEG 400) modified calcium loaded on the rice husk activated carbon (CaO/AC) catalyst was prepared via the dipping method and then was used as a heterogeneous solid-base catalyst to produce biodiesel. The effects of CaO/AC ratio and calcination time on catalytic performance were researched according to the yield of biodiesel, and the optimum reaction conditions for biodiesel from soybean oil via PEG 400–modified CaO/AC catalyst were evaluated. The results showed that the yield of fatty acid methyl ester (FAME) achieved 93.01% at the reaction temperature of 342 K, methanol/oil molar ratio of 10:1, and reaction time of 6 h. All in all, modified CaO/AC catalyst showed very high activity for transesterification of soybean oil and had catalytic repeated availability.  相似文献   

18.
We assessed the biodiesel production process in a continuous microchannel through preparation of a heterogeneous catalyst (CaO/MgO) from demineralized water plant sediment. This mixed oxide catalyst was used for transesterification of rapeseed oil as feedstock by methanol to produce biodiesel fuel at various conditions. A microchannel, utilized as a novel reactor, was applied to convert rapeseed oil into biodiesel in multiple steps. The effects of the process variables, such as catalyst concentration, methanol to oil volume ratio, n-hexane to oil volume ratio, and reaction temperature on the purity of biodiesel, were carefully investigated. Box-Behnken experimental design was employed to obtain the maximum purity of biodiesel response surface methodology. The optimum condition for the production of biodiesel was the following: catalyst concentration of 7.875 wt%, methanol to oil volume ratio of 1.75: 3, n-hexane to oil volume ratio of 0.575: 1, and reaction temperature of 70 °C.  相似文献   

19.
Biodiesel is a green, safe, renewable alternative fuel, which is of great significance to solving the problem of energy shortage and environmental pollution. A series of solid base catalysts were prepared with the support of attapulgite (ATP), the load of C4H5O6KNa by impregnation method, and were used to catalyze transesterification of soybean oil with methanol to biodiesel. The activities of prepared catalysts were investigated compared to pure ATP. The optimal conditions for the catalyst preparation were investigated: molar ratio of Na: ATP was 1.7: 1 and calcination temperature was 400 °C. The prepared catalysts were characterized by several techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption measurements, X-ray diffraction and the Hammett indicator method. The prepared solid base catalyst can be separated from reaction system effectively and easily. The effects of the molar ratio of methanol to oil, reaction temperature and amount of catalyst on the biodiesel yield were investigated. The experimental results showed that a 22: 1 molar ratio of methanol to oil, 10.0% of catalyst amount, 65 °C of reaction temperature and 3.0 h of reaction time gave the best results. The catalyst has longer lifetime and maintained sustained activity after being used for five cycles.  相似文献   

20.
K/SBA 15 was investigated for the transesterification of palm oil. The influence of temperature, reactants' ratio, catalyst loading and reaction time on the biodiesel yield was studied using a Central Composite Design (CCD). The process optimization using Response Surface Methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum conditions were found to be 70 °C for the reaction temperature, 11.6 mol/mol for methanol to oil ratio, 3.91 wt.% for the catalyst loading and 5 h for the reaction time to achieve 93% of biodiesel yield. High catalytic activity was attributed to high surface area of the catalyst and the relatively easy diffusion of reactants in the mesopores. The effect of catalyst loading and reaction time was relatively more dominant in affecting the biodiesel yield. High potential of SBA-15 as catalyst for biodiesel production was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号