首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental measurements in a flat-bottom tank with narrow-blade hydrofoil and pitched-blade impellers are used to develop guidelines for off-centre, or eccentric, placement of vertical agitators in unbaffled tanks. The guidelines are based on providing a turbulent blend time that is no more than 20% longer than that of the same impeller operating at the same rotational speed on the centreline of a baffled tank. In addition to investigating the effect of impeller type, impeller diameter and off-bottom clearance are also considered. The results support the commonly noted rule of thumb that as off-centre distance is increased, performance in an unbaffled vessel approaches that in a baffled tank. A notable exception to this axiom occurs when a large impeller is located close to the tank base (specifically, D/T = 0.40, C/T = 0.10, and O/T = 0.25). In this case, a stable impeller tip vortex forms with both impeller types, with slow exchange of material between the vortex and bulk liquid leading to long blend times. Besides blend time decreasing with increasing off-centre distance, the uncertainty or run-to-run variation in blend time also decreases dramatically. In most cases, the pitched-blade turbine requires a smaller off-centre distance than the hydrofoil impeller to approximate the blending performance provided during baffled operation.  相似文献   

2.
A shear thinning fluid (1% carboxymethyl cellulose) was used to investigate mixing under laminar flow conditions in an unbaffled vessel. The effects of impeller modification in addition to eccentricity were studied. Quantitative measurements such as percentage of uncovered area and coefficient of variance (CoV) of a tracer solution distributed inside the vessel were obtained using planar laser-induced fluorescence (PLIF) method. Increased eccentricity was found to be more effective than increasing rpm alone in reducing isolated mixing regions size (determined by the percentage of uncovered area). The dual-flow pitched blade turbine (DF-PBT), which was the modified version of a standard pitched blade turbine (PBT), was designed to provide both upward and downward flow at the same time to induce more chaotic flow. Though numerical analysis showed this type of flow generated, DF-PBT did not return lower values for the percentage of uncovered area and CoV than PBT did. Power consumption data were also compared between the two impeller types and eccentric locations. Further analyses focusing on the interactions between the impeller blades and fluid rheology is needed to improve laminar mixing in stirred vessels by impeller modification.  相似文献   

3.
The Speziale, Sarkar and Gatski Reynolds Stress Model (SSG RSM) is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller. Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations. CFD model data in terms of the flow field, trailing vortex, and the power number are compared with published experimental results. The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM. The predicted mean velocity components in axial, radial and tangential direction are also in good agreement with experiment data. The power number predicted is quite close to the designed value, which demonstrates that this model can accurately calculate the power number in the stirred tank. Therefore, the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank, and it offers an alternative method for design and optimisation of stirred tanks.  相似文献   

4.
Experimental investigation has been done in unbaffled gas-liquid stirred tanks using dual concave blade impeller to analyze the mass transfer, power consumption and gas holdup. Optimal impeller clearance has been suggested for lower and upper impeller based on maximum mass transfer rate. Numerical modeling has been done to analyze the flow pattern for different combinations of impeller clearance. The lower impeller positioned at 0.3 of tank diameter and clearance between lower and upper impeller at 0.4 of tank diameter gave the maximum mass transfer coefficient. Scale-up criteria for mass transfer rate, power and gas holdup have been developed for optimal geometrical similar systems of unbaffled stirred tanks with dual concave impeller.  相似文献   

5.
Estimation of mixing time is an essential aspect in characterization of stirred tanks. In this work, we report a novel, non-invasive technique to estimate mixing time in an unbaffled stirred tank using a contact type ultrasonic sensor. Variation in speed of sound in stirred tank is measured by ultrasound and is used to determine the mixing time of solutions. A sensing time of 16.6 ms (~60 Hz) is achieved which leads to an estimation of the mixing process dynamics under forced vortex conditions. The method is validated against colorimetric technique using a dye. The technique is thereafter used to determine mixing time under different operating (impeller speed) and geometrical (impeller design, vessel diameter, and off-bottom clearance) conditions. Though the results presented are specific to unbaffled stirred tank, the method reported is general and can be used in any kind of stirred tank.  相似文献   

6.
无挡板搅拌槽中液-固体系的分散特性   总被引:3,自引:2,他引:1  
在内径0.3 m、高0.45 m的无挡板搅拌槽内,采用直径0.15 m的三叶70o下推斜叶透平桨(PBTD, Pitched Blade Turbine Downflow)进行水-二氧化硅两相体系液固分散特性的研究. 应用PC-6A粉体浓度测量仪对体系中颗粒局部浓度进行测定. 考察了颗粒平均相含率为0.005的条件下,不同搅拌转速、搅拌桨离底高度对颗粒局部浓度分布的影响. 结果表明,采用较高搅拌转速、较低的搅拌桨离底高度有利于固体颗粒的悬浮. 本实验中,在搅拌转速为173 r/min、搅拌桨离底高度为0.08 m的操作条件下,颗粒悬浮效果最好.  相似文献   

7.
The study was carried out to simulate the 3D flow domain in the mixing of pseudoplastic fluids possessing yield stress with anchor impellers, using a computational fluid dynamics (CFD) package. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Herschel–Bulkley model. To validate the model, the CFD results for the power consumption were compared to the experimental data. After the flow fields were calculated, the simulations for tracer homogenization were performed to simulate the mixing time. The effects of impeller speed, fluid rheology, and impeller geometry on power consumption, mixing time, and flow pattern were explored. The optimum values of c/D (impeller clearance to tank diameter) and w/D (impeller blade width to tank diameter) ratios were determined on the basis of minimum mixing time.  相似文献   

8.
三叶后掠-HEDT组合桨搅拌釜内流场的模拟及实验   总被引:1,自引:0,他引:1       下载免费PDF全文
周勇军  袁名岳  徐昊鹏  何华  孙建平 《化工学报》2019,70(12):4599-4607
对应用于聚乙烯聚合反应中的三叶后掠-HEDT组合桨的搅拌釜内流场进行了模拟研究,分析组合桨的离底距C 1、桨间距C 2以及转速N的变化对搅拌釜内流场的影响,利用PIV实验对模拟结果进行了验证;将该组合桨与三叶后掠-六直叶圆盘涡轮组合桨进行了模拟对比研究。结果表明:当桨间距与釜内径的比为0.35时,釜内桨叶间的流体流动效果最好,该条件下能够改善搅拌釜上层流体的速度分布;当离底距与釜内径的比值为0.29时,组合桨下方出现了整体的环流,有利于釜底流体的混合;桨叶转速N=90 r/min时釜内流体速度分布均匀,同时上层HEDT桨叶产生的射流方向趋于水平。两种组合桨的对比研究表明:二者流型相近,但前者搅拌功率能够得到明显降低。研究结果可为三叶后掠-HEDT组合桨在聚乙烯聚合反应釜中的工程应用提供参考。  相似文献   

9.
柔性Rushton搅拌桨的功耗与流场特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于传统的Rushton桨,开发了一种柔性叶片Rushton搅拌桨。采用数值模拟方法研究了柔性桨的功耗及层流和湍流流场特性,并分别采用扭矩测量法和粒子图像测速法进行了实验验证。结果表明,对于实验规模的搅拌容器,当介质黏度与甘油接近时,可用橡胶作为柔性桨叶制作材料。Reynolds数≤100时,柔性桨的功耗大于刚性桨;Reynolds数大于该值后,柔性桨的功耗小于刚性桨。柔性桨叶对被搅拌流体具有自适应特性,流固耦合作用下产生的变形增加了流体的径向流动能力。搅拌低黏度流体时,柔性桨能提升近桨区流体的速度,增加桨叶远端流体的循环流动能力;搅拌高黏度流体时,近桨区和桨叶远端流体的速度均大于刚性桨。就尾涡而言,柔性桨产生的涡量较小,耗能少。  相似文献   

10.
轴流式搅拌器湍流运动特性   总被引:21,自引:0,他引:21       下载免费PDF全文
引言 搅拌混合是化工工业过程中最常见,也是最重要的单元操作之一,其主要目的是加速体系中传质或传热过程.  相似文献   

11.
Power consumption was measured in mechanically agitated contactors of internal diameter 0.3 m, 0.57 m, 1.0 m and 1.5 m. Tap water was used as a liquid in all the experiments. The impeller speed was varied in the range of 0.3-13.33 r/s. Three types of impellers, namely disc turbine (DT), pitched-blade downflow turbine (PTD) and pitched blade upflow turbine (PTU) were employed. The ratio of the impeller diameter to vessel diameter (D/T) and the ratio of impeller blade width to impeller diameter (W/D) were varied over a wide range. The effects of impeller clearance from the tank bottom (C), blade angle (φ), total liquid height (H/T), number of impeller blades (nb) and blade thickness (tb) were studied in detail. Power consumption was measured using a torque table

Power number was found to have a strong dependence on the flow pattern generated by the impeller. Unlike, DT and PTU, the power number of PTD was found to increase with a decrease in clearance. The PTD (T/3) was found to have the lowest power number in all the vessels and the power number increased with either a decrease or an increase in the impeller diameter from T/3. The dependence of power number on impeller diameter was found to be more prominent when the D/T ratio was more than 0.3. In general, the power number was found to increase with an increase in blade angle and blade width. The effect of blade width was found to be more prominent in larger diameter vessels. A correlation has been developed for power number in the case of PTD impellers.  相似文献   

12.
Stirred tank (STR) flows at low and moderate Reynolds numbers show poor mixing behavior due to formation of segregated zones inside which both magnitude and fluctuation level of velocity components show lower values compared to the active fluid regime (i.e., impeller jet stream, circulation loops). Active perturbation of the STR flow using a time-dependent impeller rotational speed can potentially enhance mixing by breaking up these segregated unmixed zones and enhancing the turbulence level throughout the tank volume. In the present study, the effect of different perturbation cycles on an unbaffled turbulent stirred tank flow at a moderate Reynolds number (rotational speed N=3 rps) is studied using a large-eddy simulation (LES) technique coupled with immersed boundary method (IBM). The perturbation frequency (f) is chosen to correspond to a dominant macro-instability in the flow (f/N=0.022). Two different perturbation amplitudes (20% and 66%) and two perturbation shapes (square-wave and sine-wave) are investigated, and changes in the mean flow field, turbulence level and impeller jet spreading are examined. Large-scale periodic velocity fluctuations due to perturbations are noticed to produce large strain rates favoring higher turbulence levels inside the tank. Production of turbulent kinetic energy due to both the mean and periodic component of the velocity field is presented. Fluctuations in power consumption due to perturbation are also calculated, and shown to correlate with the perturbation amplitude.  相似文献   

13.
搅拌槽内流场脉动的频谱分析研究   总被引:2,自引:1,他引:1  
为揭示涡轮桨搅拌槽内非稳态流动的规律,加深对混合机理的了解,采用了新兴的DPIV(DigitalParticleImageVelocimetry)流场测量技术,对具有大D/T比的四直叶涡轮桨搅拌槽内瞬时流场进行了测量。实验发现搅拌槽内的瞬时流场是相当杂乱和随机的。为考察整个流场的流型变化情况,引入了全场平均涡度概念,并进而结合傅立叶变换这一时间序列分析工具,对获得的全场涡度平均时间序列进行了频谱分析。频谱分析表明,槽内确实存在宏不稳定现象(MI,MacroInstabilities),其变化周期很长,可达桨叶通过周期的10~200倍;MI发生的频率与转速成正线性比例关系;转速较低时(30~60r穖in-1),槽内流动随机脉动较弱,MI现象明显;随着转速的提高(120~180r穖in-1),脉动趋于剧烈,随机性增强,而MI相对减弱。  相似文献   

14.
Detached eddy simulation (DES) of the liquid-phase turbulent flow in an unbaffled stirred tank agitated by a six-blade, 45°-pitched blade turbine was performed in this study. The tank wall is cylindrical with no baffle and the fluid flow problem was solved in a single reference frame (SRF) rotating with the impeller. For the purpose of comparison, computation based on large eddy simulation (LES) was also carried out. The commercial code Fluent was used for all simulations. Predictions of the phase-averaged turbulent flow quantities and power consumption were conducted. Results obtained by DES were compared with experimental laser Doppler velocimetry (LDV) data from the literature and with the predictions obtained by LES. It was found that numerical results of mean velocity and turbulent kinetic energy profiles as well as the power consumption are in good agreement with the LDV data. When performed on the same computational grid, which is under-resolved in the sense of LES, DES allows better accuracy than LES in that it works better in the boundary layers on the surface of the impeller and the stirred tank walls. It can be concluded that DES has the potential to predict accurately the turbulent flow in stirred tanks and can be used as an effective tool to study the hydrodynamics in stirred tanks.  相似文献   

15.
吹气发泡法制备闭孔泡沫铝发泡过程的三维数值模拟   总被引:1,自引:0,他引:1  
吹气发泡法制备闭孔泡沫铝的过程实质上是搅拌流场中复杂的两相流动过程,应用计算流体力学方法分析由倾斜轴倾斜叶片引起的发泡熔池内气液两相强旋湍流流动过程. 在双流体模型基础上引入多重参考系法描述搅拌两相流场,通过分析相间相互作用及湍流模型进行封闭. 解气泡数密度函数的输运方程来分析气泡聚合和破碎引起的气泡尺寸变化. 应用体积积分的方法,计算平均及局部气含率及气泡直径. 考察了桨叶转速及气体流率对气泡直径及其分布的影响. 结果显示,气含率随桨叶转速和气体流率增加而增大;气泡直径随气体流率增加而增大,随桨叶转速增大而减小.  相似文献   

16.
The influence of impeller diameter on crystal growth kinetics of borax decahydrate in a batch‐cooling crystallizer of non‐standard aspect ratio was evaluated. The dual‐impeller configuration consisted of a pitched‐blade turbine which was mounted below a straight‐blade turbine on a single shaft. Three different impeller‐to‐tank diameter ratios were investigated. In all experiments, mixing was conducted at just‐suspended impeller speed. To examine hydrodynamic conditions, mixing times were measured. The fluid flow pattern and velocity distribution were determined by computational fluid dynamics. Results showed that the smallest but also more regularly shaped crystals were produced in a system with standard diameter impellers. Product yield and power consumption were highest in this case.  相似文献   

17.
An LIF (Laser induced flourescence) line scan system was used to obtain unobtrusive scalar concentration measurements in a continuously operated stirred tank agitated by a radial flow Rushton turbine and an axial flow 60°‐pitched blade impeller. A better blending process was generally achieved in the axial flow field, with macro‐ and micromixing in the radial flow field being most complete with fluid injected into the radial discharge jet, and in the axial flow field with fluid injected from above into the rotating impeller. Local concentration levels and fluctuations scaled with the feed pipe flow rate, and the degree of concentration uniformity throughout the tank scaled with the impeller speed and increased with the cube of the power input.  相似文献   

18.
The design of economically feasible and profitable production processes has driven companies toward integrated continuous manufacturing by reducing working volumes and increasing operating frequencies. Thus, the development of robust small-scale devices capable of multivariate process optimization is essential. The aim of this work is to characterize the flow developed in a ml-scale stirred tank operating at intermediate 𝑅𝑒 ~3732, and assess trailing vortex stability with respect to baffle presence and size. Velocity characteristics are computed via computational fluid dynamics (CFD) and validated experimentally for an unbaffled (UB) and two baffled configurations. Proper orthogonal decomposition (POD) is used to extract dominant spatial–temporal flow features affecting the underlying flow patterns. Results show very good agreement between simulations and experiments, while POD analysis revealed the existence of highly energetic and periodic modes, linked to interactions between impeller jet and reactor walls. These modes are responsible for an impeller jet instability, which is amplified by the presence and size of baffles.  相似文献   

19.
The hydrodynamics of an unbaffled vessel stirred by an eccentrically located Rushton turbine is investigated with both Laser Doppler Anemometry and flow visualisation techniques. The flow field is shown to be characterised by a strong circumferential motion which develops itself around two main vortices, one above and one below the impeller, both inclined with respect to the vertical plane. Such vortices are not steady but move periodically very slowly in comparison to the impeller rotational timescale. Accordingly, two low frequency components, whose values are linearly dependent on the impeller rotational speed, are identified across the vessel. The energetic contribution to the turbulent kinetic energy of such flow instabilities is significant so that they should be taken into account when evaluating micro-mixing information from turbulence quantities. Besides, an additional low frequency component is observed and related to vortex shedding phenomena from the flow-shaft interaction which occur in eccentric agitation operation. The flow discharged from the impeller is also measured and discussed.  相似文献   

20.
Experiments have been performed to study the effect of the density and the volume of the tracer pulse on the mixing time for two impeller combinations in the presence of gas in a 0.3 m diameter and 1 m tall cylindrical acrylic vessel. The tall multi-impeller aerobic fermenters, which require periodic dosing of nutrients that are in the form of aqueous solution, is a classic case under consideration. Conductivity measuring method was used to measure the mixing time. Two triple impeller combinations; one containing two pitched blade downflow turbines as upper impellers and disc turbine as the lowermost impeller (2 PBTD-DT) and another containing all pitched blade downflow turbines (3 PBTD) have been used. Other variables covered during experiments were the density and the amount of the tracer pulse, the impeller rotational speed and the gas superficial velocity. Fractional gas hold-up, Power consumption and mass transfer coefficient have also been measured for both the impeller combinations. Influence of aeration and impeller speed on the mixing time has been explained by the interaction of air induced and impeller generated liquid flows. Three different flow regimes have been distinguished to explain the hydrodynamics of the overall vessel (i.e., multiple impeller system). A compartment model with the number of compartments varying with the flow regimes have been used to model liquid phase mixing in these flow regimes. A correlation for the prediction of the dimensionless mixing time in the loading regime has been proposed in order to account the effect of the density and the amount of the tracer pulse on the mixing time. Correlations have also been proposed to predict fractional gas hold-up and kLa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号