首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic combustion concept for gas turbines   总被引:1,自引:0,他引:1  
Catalytic combustion for gas turbines was investigated, based on a partial catalytic combustion section followed by a homogeneous combustion zone. A pressurized test rig (<25 bar) was built to test the influence of various parameters on this concept using Pd and Pt catalysts.

The pressure influence on the apparent catalytic reaction rate was of the order 0.4, assuming that the reaction kinetics could be described by a power rate function which was of first order with respect to methane. Pd catalysts showed a pressure-dependent temperature for the transition of the active PdO to the much less active Pd. Combining Pd and Pt within one catalyst resulted in a considerably lower transition temperature.

Homogeneous combustion reactions set on from 650°C, depending on the methane concentration, pressure and flow. With inlet temperatures above 800°C the homogeneous combustion always started. At outlet temperatures below 1050°C high CO concentrations could be measured. At higher temperatures the CO, CH4 and NOx concentrations were lower than 5 ppm. During several experiments total conversion of CH4 and CO was observed.  相似文献   


2.
Monolithic organic aerogels were prepared by the sol–gel procedure from the polymerisation reaction of resorcinol and formaldehyde in water. The organic aerogels were heat treated in inert atmosphere at either 500 or 1000 °C to obtain the carbon aerogels. The catalysts were prepared by impregnation with an aqueous solution of [Pt(NH3)4]Cl2 or by dissolving this salt in the initial aerogel mixture. Supported catalysts were pretreated in He at 400 °C or H2 at 300 °C before their characterization by H2 chemisorption, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy or before testing their catalytic activity. Catalyst activities in toluene combustion were evaluated by conversion versus temperature (light-off curves) and conversion versus time catalytic tests. In the case of catalysts prepared by impregnation, the light-off curves for the total combustion of toluene were shifted to lower temperatures with increasing Pt particle size. This suggests that the reaction was sensitive to the Pt structure within the dispersion range of these catalysts. However, the reverse occurred with catalysts prepared by mixing the precursor in the initial aerogel mixture. Results found could be due to the different surface Pt content of these catalysts as revealed by X-ray photoelectron spectroscopy. This difference was related to the growth of large three-dimensional Pt particles on the surface of the less dispersed catalyst. This means that there is a critical Pt particle size above which the toluene combustion activity decreases with increasing Pt particle size, due to the reduction in active surface sites available for the combustion reaction. Other effect that might influence the activity of these last catalysts is the encapsulation of some Pt particles by the carbon matrix.  相似文献   

3.
The reaction and emissions characteristics of catalytic reactors comprising noble metal catalysts were investigated using homogeneous mixtures of natural gas and vitiated air at pressures up to 2.9 MPa. The mixture temperatures at inlet ranged from 500 to 700°C and the fuel-air ratio was increased till the exit gas temperature reached about 1200°C. Values of combustion efficiency greater than 99.5% and nitrogen oxides emissions for all catalytic reactors tested were less than 0.2 g NO2/kg fuel (2 ppm (15% 02) ) for all reactors at reactor exit gas temperatures higher than about 1100°C. Combustion efficiency decreased with increasing pressure in the heterogeneous-reaction controlled region, though a pressure increase favored homogeneous, gas phase reactions. Appreciable reactivity deterioration by aging for 1000 h at 1000°C was observed at lower mixture temperatures. A two-stage combustor comprising a conventional flame combustion stage and a catalytic stage was fabricated and its NO,x emissions and performance were evaluated at conditions typical of stationary gas turbine combustor operations. About 80% reduction in NO,x emissions levels compared with flame combustion was attained at 1 MPa pressure and 1180°C exit gas temperature, together with complete hydrocarbon combustion.  相似文献   

4.
The kinetics of the catalytic combustion of methane by supported palladium oxide catalysts (2 wt.-% Pd/La2O3·11A12O3 and 5 wt.-%Pd/ γ-A1203 were examined for several oxygen partial pressure levels over the temperature range from 40–900°C using temperature-programmed reaction and slow ramp and hold temperature-time transient techniques. Combustion rates were measured by differential reaction in a fixed bed of powdered catalyst at lower temperatures (200–500°C). Also, by preparing the catalysts as thin (ca. 10 μm) coatings on an alumina tube and conducting the experiments with very high flows of dilute methane and oxygen in helium, the rate measurements were extended up to 900°C without significant contribution from gas phase reactions. The specific combustion activity of supported PdO shows a persistent hysteresis between 450 and 750°C, i.e., the rate of combustion between these temperature limits depends strongly on whether the catalyst is cooling from above 750°C or heating from below 450°C. This region is also notable for negative apparent activation energy in the rate of methane oxidation, i.e., the rate increases with decreasing temperature during reoxidation of the Pd metal and decreases with increasing temperature (especially with low oxygen partial pressure) prior to decomposition of the bulk oxide. Detailed time-temperature transient kinetic analyses were performed for supported PdO catalysts within the 450–750°C temperature range. The hysteresis in methane combustion rate is caused by a higher activation energy for reduction of oxygen chemisorbed on metallic Pd and by suppressed reoxidation of Pd metal relative to PdO decomposition.  相似文献   

5.
Development of a catalytically assisted combustor for a gas turbine   总被引:2,自引:0,他引:2  
A catalytically assisted low NOx combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000°C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300°C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000°C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20 MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NOx, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NOx emission was lower than 10 ppm converted at 16% O2, combustion efficiency was almost 100% at 1300°C of combustor outlet temperature and 13.5 ata of combustor inlet pressure.  相似文献   

6.
Catalytic combustion of methane on aluminate-supported copper oxide   总被引:3,自引:0,他引:3  
Copper oxide has been deposited onto high surface area magnesium aluminate spinel prepared from alumina and magnesium nitrate. The catalytic properties of such a solid have been investigated in methane combustion. At the laboratory scale a very good activity is observed (light-off of 530°C) and no CO is detected. Aging at 1000°C under water vapour has no influence on activity. The previous catalyst has been washcoated on monolith and tested on a rig either with methane or synthetic natural gas at very high GHSV under conditions close to those of a gas turbine. In that case also, a good activity was observed.  相似文献   

7.
M. Berg  S. Js 《Catalysis Today》1995,26(3-4):223-229
The activity of magnesium oxide for catalytic combustion of methane was examined and the results were compared with experimental results for manganese-substituted barium hexaaluminate. The catalysts were calcined at temperatures up to 1 500°C and the effects of temperature, space velocity and calcination temperature were examined. The catalysts were also characterized with BET and XRD. For magnesium oxide calcined at 1 100°C the ignition temperature T10% was decreased by 270°C compared to the non-catalyzed reaction. For the same catalyst T50% was measured to be 795°C. The corresponding temperature for the hexaaluminate was 640°C. The difference between the two catalysts decreased after calcination at 1 500°C. For the magnesium oxide the influence of catalytically initiated homogeneous gas phase reactions was studied by varying the post catalytic volume of the reactor (and hence the residence time in the heated zone after the catalyst). It was shown that these catalytically initiated homogeneous gas phase reactions are significant for the methane conversion.  相似文献   

8.
A knitted silica-fibre was prepared and used as support for combustion catalysts. Different Pd–MeO and Pt–MeO (Me=Ni, Co, Cu and Mn) catalysts were prepared, and their catalytic activities were investigated in the conversion of gas mixtures consisting of methane, ethene, naphthalene (model PAH), carbon monoxide, carbon dioxide, nitrogen and water vapour in the temperature range 150–800°C. Combinations of Pd–Ni and Pt–Ni were found to result in decreased light-off temperatures in methane combustion. The Pd–Ni/silica-fibre catalyst exhibited a light-off temperature in methane combustion of ca 220°C lower than that obtained over the Pd/silica-fibre catalyst. Deactivation of the catalysts was observed by subjecting the catalysts to reaction mixture flow at 800°C for 6 h. For the Pd-containing catalysts, the deactivation was considered to be due to both support and metal sintering as well as changes in the nature of the Pd–O species. The catalysts were characterised by N2-adsorption, H2-adsorption, O2–TPD and H2–TPR.  相似文献   

9.
Three supported La0.8Sr0.2MnO3+x catalysts were prepared, one supported on lanthanum-stabilised alumina and two supported on a NiAl2O4 spinel. The catalysts were characterised using X-ray diffraction, transmission electron microscopy and surface area measurements following heat-treatments at temperatures up to 1200°C in air. In the alumina-supported catalyst, a reaction occurred between the active phase and the support at high temperatures, indicating that these materials would be unsuitable for high temperature catalytic combustion. Only in the NiAl2O4-supported catalysts were the supported perovskite phases found to be stable at high temperature. These catalysts showed good methane combustion activity.  相似文献   

10.
Catalytic combustion is an advanced combustion technology and is effective as a NOx control for a 1300°C class gas turbine for power generation, but the catalyst reliability at high temperatures is still insufficient. To overcome this difficulty, catalytic combustors combined with premixed combustion were designed. In this concept, it is possible to obtain combustion gas at a temperature of 1300°C while keeping the catalyst bed temperature below 1000°C. Catalyst segments are arranged alternately with premixing nozzles for the mixing of catalytic combustion gas and fresh premixture. An air bypass valve was fitted to this combustor for extending the range of stable combustion. As a result of the atmospheric combustion tests, NOx emission was lower than 5 ppm, combustion efficiency was almost 100%, and high combustion efficiency was obtained in the range of 900–1300°C of the combustor exit gas temperature. A full-pressure combustion test is planned to prove the combustor performance.  相似文献   

11.
Catalytic combustion of methane over perovskites   总被引:9,自引:0,他引:9  
Perovskite-type oxides of the series La1− xAxMnO3 (A Sr, Eu and Ce) were prepared by the amorphous citrate process, leading to high surface area catalysts (up to 45 m2 g−1). They were tested in a flow reactor for the total combustion of methane. Complete conversion was obtained over all of the catalysts between 500 and 600°C and catalyst performance did not change significantly after 100 h on-stream. Specific activity was found to decrease monotonically with increasing the temperature of the O2 TPD desorption peak maximum. The rate of methane combustion was low below 500°C, then grew very fast, showing that two kinds of oxygen are active in these catalysts: an adsorbed oxygen species, that reacts at low temperature, and a lattice oxygen species, that becomes available at high temperature, boosting the catalytic activity.  相似文献   

12.
Palladium cation exchanged zeolites (ZSM-5, mordenite and ferrierite) were studied as catalysts for methane combustion. Pd-zeolites showed much higher activities than PdO/Al2O3. For comparable palladium loadings, PdO/Al2O3 requires a reaction temperature of ca. 70–80°C higher than Pd-ZSM-5 for conversions between 50–100%. The catalytic activity of Pd-ZSM-5 seems to be related to its reducibility. Temperature-programmed reduction experiments with carbon monoxide showed a lower reduction temperature (ca. 157°C) for Pd-ZSM-5 than for PdO/Al2O3 (225°C). Further, the positioning of the palladium by ion exchange offers a highly dispersed form of PdII supported on the high surface area zeolite.  相似文献   

13.
Basic application concepts of catalytic combustion are roughly classified into three types, and the development of catalysts, combustion performance and applicability are stated. On the diffusive catalytic combustion method, completeness of methane combustion and its reaction mechanism have been demonstrated by detailed combustion analysis of the burner and reaction kinetics. On the adiabatic lean premixed catalytic combustion method, applicability of a high-temperature catalyst system based on Mn-substituted hexaaluminate monolithic honeycomb to a 1.5 MW gas turbine combustor has been investigated through pressurized combustion tests and prototype engine-rig tests. As a result, a good outlook of the basic technical problems to overcome including the catalyst durability and the combustor control method was obtained, but another problem was that of the combustor capacity. In view of the progress of the non-catalytic lean premixed combustion method, it was concluded that a hybrid catalytic combustion method limiting catalytic combustion to the low-temperature range in this concept might become efficient in the future, but that it would depend on the development of efficient catalysts initiating their activity at about 350°C and having durability at 1000°C.  相似文献   

14.
A set of perovskite-type catalysts of general formula LaBOδ (B=Co, Mn, Fe) and a sample of La2NiOδ were prepared by means of a recently proposed innovative flame–hydrolysis procedure. The catalysts were characterised by nanometer-size particles (20–60 nm), relatively high surface area (ca. 20 m2/g), high thermal stability and high phase purity. Their high activity for the catalytic flameless combustion of methane confirmed the validity and versatility of the preparation method.

Temperature-programmed -desorption and -reaction, coupled with mass spectrometric analysis, allowed to better understand some aspects of the catalytic behaviour shown by the present samples for the cited reaction. In particular, an interesting correlation between the availability of oxygen at various temperatures, as revealed by the so-called and β oxygen desorption peaks, and reaction mechanism was found for the different B metals.  相似文献   


15.
Nano-scale, binary, 4.5 wt.% Fe–0.5 wt.% M (M = Pd, Mo or Ni) catalysts supported on alumina have been shown to be very effective for the decomposition of lower alkanes to produce hydrogen and carbon nanofibers or nanotubes. After pre-reduction at 700 °C, all three binary catalysts exhibited significantly lower propane decomposition temperatures and longer time-on-stream performances than either the non-metallic alumina support or 5 wt.% Fe/Al2O3. Catalytic decomposition of propane using all three catalysts yielded only hydrogen, methane, unreacted propane, and carbon nanotubes. Above 475 °C, hydrogen and methane were the only gaseous products. Catalytic decomposition of cyclohexane using the (4.5 wt.% Fe–0.5 wt.% Pd)/Al2O3 catalyst produced primarily hydrogen, benzene, and unreacted cyclohexane below 450 °C, but only hydrogen, methane, and carbon nanotubes above 500 °C. The carbon nanotubes exhibited two distinct forms depending on the reaction temperature. Above 600 °C, they were predominantly in form of multi-walled nanotubes with parallel walls in the form of concentric graphene sheets. At or below 500 °C, carbon nanofibers with capped and truncated stacked-cone structure were produced. At 625 °C, decomposition of cyclohexane produced a mixture of the two types of carbon nanostructures.  相似文献   

16.
In this work, we investigated the activity and stability of Ag–alumina catalysts for the SCR of NO with methane in gas streams with a high concentration of SO2, typical of coal-fired power plant flue gases. Ag–alumina catalysts were prepared by coprecipitation–gelation, and dilute nitric-acid solutions were used to remove weakly bound silver species from the surface of the as prepared catalysts after calcination. SO2 has a severe inhibitory effect, essentially quenching the CH4-SCR reaction on this type catalysts at temperatures <600 °C. SO2 adsorbs strongly on the surface forming aluminum and silver sulfates that are not active for CH4-SCR of NOx. Above 600 °C, however, the reaction takes place without catalyst deactivation even in the presence of 1000 ppm SO2. The reaction light-off coincides with the onset of silver sulfate decomposition, indicating the critical role of silver in the reaction mechanism. SO2 is reversibly adsorbed on silver above 600 °C. While alumina sites remain sulfated, this does not hinder the reaction. Sulfation of alumina only decreases the extent of adsoption of NOx, but adsorption of NOx is not the limiting step. Methane activation is the limiting step, hence the presence of sulfur-free Ag–O–Al species is a requirement for the reaction. Strong adsorption of SO2 on Ag–alumina decreases the rates of the reaction, and increases the activation energies of both the reduction of NO to N2 and the oxidation of CH4, the latter more than the former. Our results indicate partial contribution of gas phase reactions to the formation of N2 above 600 °C. H2O does not inhibit the reaction at 625 °C, and the effect of co-addition of H2O and SO2 is totally reversible.  相似文献   

17.
Mesoporous nanocrystalline zirconia with high-surface area and pure tetragonal crystalline phase has been prepared by the surfactant-assisted route, using Pluronic P123 block copolymer surfactant. The synthesized zirconia showed a surface area of 174 m2 g−1 after calcination at 700 °C for 4 h. The prepared zirconia was employed as a support for nickel catalysts in dry reforming reaction. It was found that these catalysts possessed a mesoporous structure and even high-surface area. The activity results indicated that the nickel catalyst showed stable activity for syngas production with a decrease of about 4% in methane conversion after 50 h of reaction. Addition of promoters (CeO2, La2O3 and K2O) to the catalyst improved both the activity and stability of the nickel catalyst, without any decrease in methane conversion after 50 h of reaction.  相似文献   

18.
Novel LaMnO3 perovskite-based structured catalysts have been studied for methane catalytic combustion under lean, pre-mixed conditions. Monoliths have been prepared by wash-coating cordierite honeycomb substrates with lanthanum stabilised ZrO2, on which the perovskite was dispersed by either impregnation or deposition–precipitation (DP) routes. Extensive physico-chemical characterisation of monoliths (by means of XRD, BET, SEM-EDAX, TPR of H2 and drift analysis) has revealed the presence of a zirconia layer firmly anchored on cordierite walls, with remarkable surface area and chemical inertia towards negative interactions with perovskitic active phase. The activity of fresh catalysts for methane combustion is significantly enhanced with respect to bulk LaMnO3, due to good dispersion on the porous support. Catalytic performances and durability have been studied under auto-thermal reaction conditions of interest for radiant pre-mixed burners, with maximum catalyst temperatures up to 1000 °C, through accurate characterisation of ignition transients and steady operation, comparing results with those relevant to both nude cordierite and previously developed monoliths of LaMnO3 supported on La stabilised γ-Al2O3.  相似文献   

19.
The influence of the reduction temperature on the accessibility of the metallic surface was studied on model ceria-alumina supported platinum or rhodium catalysts. For a 0.5% Pt-Ce/Al solid, the H/M values, deduced from hydrogen irreversible chemisorption, decrease deeply with Tr, the reduction temperature, from 60% at Tr = 300°C to 19% at Tr = 500°C. This can be attributed to strong interactions between ceria and platinum, since, the initial H2 chemisorption could be restored after reoxidation. The presence of BaSO4 in the support accelerates the loss of metallic area, because of sulfur poisoning of the platinum surface. For Tr = 300°C, the dispersion values were in agreement with those deduced from FTIR spectroscopy of adsorbed CO. In the case of rhodium, a 37% H/M dispersion was obtained, which did not change when Tr was increased from 300 to 500°C. For two industrial Pt-Rh three-way catalysts, the behaviour was found similar to that of platinum, the amount of chemisorbed hydrogen decreasing for Tr > 350°C. Thus, in the three-way catalysts characterization, the maximum metal accessibility is obtained after a reduction at 300°C.  相似文献   

20.
Catalytic combustion of lean methane–air mixtures was studied on supported iron oxide and platinum monolith catalysts. Flameless catalytic combustion was investigated in the temperature range 600–900°C, GHSV up to 10 000 h−1, and methane concentration in initial gas mixture 1–9 vol%. It was shown that under certain process conditions complete combustion of methane at 4.5 vol% inlet methane concentration occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号