共查询到20条相似文献,搜索用时 0 毫秒
1.
ZHANG Xiao-yu 《通讯和计算机》2009,6(1):53-60
Sliding mode-like fuzzy logic control (SMFC) algorithm for nonlinear systems is presented in this paper. Firstly dead zone parameters of sliding mode control (SMC) are selftuned by proper adaptive laws and then combined into fuzzy logic system (FLS) to compose the opportune fuzzy logic control (FLC), which is equivalent to the predesigned SMC controller with self-tuning parameters. Robustness and invariance to the uncertainties of the closed-loop systems are improved and chattering of the SMC is eliminated. Finally simulation results of numerical examples show that the proposed control algorithm is efficient and feasible. 相似文献
2.
针对一类带有未知外部扰动的不确定非线性系统,建立自适应模糊滑模控制器。基于Lyapunov稳定性理论,设计系统可调参数的自适应规则,控制器的设计过程中无需知道系统的具体模型及未知非线性函数的先验知识。数值仿真的结果也验证了该方法的有效性。 相似文献
3.
提出了一种基于有限状态机切换策略的多输入多输出二阶滑模控制算法。算法保证了传统滑模控制对参数变化和扰动不灵敏的特点,削弱了滑模控制的“抖动”现象。在上界未知的测量噪声和参数变化的情况下,算法通过滑模量及其微分的符号构成控制律,实现了系统的镇定。仿真结果表明算法在噪声环境下能保证系统的稳定性,对参数不确定具有较强的鲁棒性。算法结构简单,便于实现。 相似文献
4.
Time-varying sliding mode control for a class of uncertain MIMO nonlinear system subject to control input constraint 总被引:1,自引:0,他引:1
To solve the regulator problem of a class of uncertain MIMO nonlinear systems subject to control input constraint, three types of time-varying sliding mode control laws are proposed. The sliding surfaces pass the initial value of the system at the initial time, and are shifted/rotated towards the predetermined ones. The controller parameters are optimized by genetic algorithm (GA). Lyapunov method is adopted to prove the stability and robustness to the parameter uncertainties and external disturbance. By me... 相似文献
5.
多变量非线性系统的间接模糊输出反馈自适应控制 总被引:1,自引:1,他引:0
针对一类多输入多输出非线性不确定系统,提出一种基于观测器的模糊间接自适应控制方法,并基于李亚普诺夫函数方法,导出了输出反馈控制律以及参数的自适应律,证明了整个控制方案不但能保证闭环系统稳定,而且取得了良好的跟踪控制性能。 相似文献
6.
An adaptive recurrent cerebellar-model-articulation-controller (RCMAC) sliding-mode control (SMC) system is developed for the uncertain nonlinear systems. This adaptive RCMAC sliding-model control (ARCSMC) system is composed of two systems. One is an adaptive RCMAC system utilized as the main controller, in which an RCMAC is designed to identify the system models. Another is a robust controller utilized to achieve system’s robust characteristics, in which an uncertainty bound estimator is developed to estimate the uncertainty bound so that the chattering phenomenon of control effort can be eliminated. The on-line adaptive laws of the ARCSMC system are derived in the sense of Lyapunov so that the system stability can be guaranteed. Finally, a comparison between SMC and ARCSMC for a chaotic system and a car-following system are presented to illustrate the effectiveness of the proposed ARCSMC system. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for the chaotic system and car-following systems without the knowledge of system dynamic functions. 相似文献
7.
研究了具有不确定项的非线性Willis环上脑动脉瘤系统的混沌控制和同步问题,提出了一种自适应模糊滑模变结构控制方法,设计了模糊滑模变结构控制器及自适应控制律,并从理论上证明了控制系统的稳定性。在该控制器的作用下,受控Willis脑动脉瘤系统能够达到任意目标轨道,且不受不确定性的影响,具有很强的鲁棒性。定值跟踪和同步控制的仿真结果表明了控制器的有效性。 相似文献
8.
In this paper,the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput(MIMO)nonlinear systems in the presence of system uncertainties,unknown non-symmetric input saturation and external disturbances.Fuzzy logic systems(FLS)are used to approximate the system uncertainty of MIMO nonlinear systems.Then,the compound disturbance containing the approximation error and the timevarying external disturbance that cannot be directly measured are estimated via a disturbance observer.By appropriately choosing the gain matrix,the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set.This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications,in particular unknown non-symmetric input saturation and control singularity.Within this setting,the disturbance observer technique is combined with the FLS approximation technique to compensate for the efects of unknown input saturation and control singularity.Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques.Numerical simulation results are presented to illustrate the efectiveness of the proposed tracking control schemes. 相似文献
9.
针对一类未知的非线性系统,利用输入/输出线性化将其变换为部分线性可控系统,通过RBF神经网络对未知非线性函数进行逼近,提出了一种基于RBF神经网络的自适应滑模控制,并设计了自适应滑模控制器;提出了一种连续函数,很好地减少了抖振现象,使得闭环系统状态一致稳定最终有界。实验结果验证了方法的有效性。 相似文献
10.
In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example. 相似文献
11.
An adaptive fuzzy decentralized backstepping output-feedback control approach is proposed for a class of nonlinear large-scale systems with completely unknown functions,the interconnections mismatched in control inputs,and without the measurements of the states.Fuzzy logic systems are employed to approximate the unknown nonlinear functions,and an adaptive high-gain observer is developed to estimate the unmeasured states.Using the designed high-gain observer,and combining the fuzzy adaptive control theory with backstepping approach,an adaptive fuzzy decentralized backstepping output-feedback control scheme is developed.It is proved that the proposed control approach can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded(SUUB),and that the observer errors and the tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Finally,a simulation example is provided to show the eectiveness of the proposed approach. 相似文献
12.
对质心位置未知的移动机器人系统设计了基于快速终端滑模的模糊自适应路径跟踪控制方法。该方法采用模糊逻辑系统逼近控制器中的未知函数,基于李亚普诺夫稳定性分析方法对未知参数设计自适应律,并设计鲁棒控制器来补偿逼近误差。该方法不但可以保证闭环系统中的所有信号有界,而且可使跟踪误差在有限时间内收敛到原点的小邻域内。仿真结果验证了方法的有效性。 相似文献
13.
Wuxi Shi Mu ZhangWencheng Guo Lijin Guo 《Computers & Mathematics with Applications》2011,62(7):2843-2853
In this paper, an indirect adaptive fuzzy control scheme is presented for a class of multi-input and multi-output (MIMO) nonlinear systems whose dynamics are poorly understood. Within this scheme, fuzzy systems are employed to approximate the plant’s unknown dynamics. In order to overcome the controller singularity problem, the estimated gain matrix is decomposed into the product of one diagonal matrix and two orthogonal matrices, a robustifying control term is used to compensate for the lumped errors, and all parameter adaptive laws and robustifying control term are derived based on Lyapunov stability analysis. The proposed scheme guarantees that all the signals in the resulting closed-loop system are uniformly ultimately bounded (UUB). Moreover, the tracking errors can be made small enough if the designed parameter is chosen to be sufficiently large. A simulation example is used to demonstrate the effectiveness of the proposed control scheme. 相似文献
14.
针对参数未知的船舶航向非线性控制系统数学模型,在考虑舵机伺服机构特性的情况下,船舶航向控制问题就成为一个虚拟控制系数未知的非匹配不确定非线性控制问题.基于多滑模设计方法和模糊逻辑系统的逼近能力,提出了一种多滑模自适应模糊控制算法,通过引入非连续投影算法和积分型Lyapunov函数,提高了系统在抑制参数漂移、控制器奇异等方面的能力.借助Lyapunov函数证明了所设计控制器使最终的闭环非匹配不确定船舶运动非线性系统中的所有信号有界,且跟踪误差收敛到零.仿真研究表明:该算法与传统的PID控制相比,具有较好的跟踪能力和自适应能力. 相似文献
15.
Chun-Yi Su 《Systems & Control Letters》1994,23(1)
In this paper an adaptive sliding mode control scheme is presented for nonlinear robotic systems with bounded time-varying parameters. The control scheme developed is very simple and computationally efficient since it does not require a knowledge of either The mathematical model or the parameter values of the robotic dynamics. It is shown that the controller is globally stable in the presence of a class of state-dependent uncertainties and that the size of the tracking error can be made arbitrarily small. 相似文献
16.
A higher order sliding mode control scheme for uncertain nonlinear systems is proposed in the present paper. It is shown that the problem is equivalent to the finite time stabilization of higher order input-output dynamics with bounded uncertainties (r∈N). The controller uses integral sliding mode concept and contains two parts. A part achieves finite time stabilization of the higher order input-output dynamics without uncertainties. The other part rejects bounded uncertainties throughout the entire response of the system. As a result, a higher order sliding mode is established. The advantages of the method are that its implementation is easy, the time convergence is chosen in advance and the robustness is ensured. An illustrative example of a car control shows the applicability of the method. 相似文献
17.
Baris Bidikli Erkan Zergeroglu Alper Bayrak 《International journal of systems science》2016,47(12):2913-2924
In this work, we present a novel continuous robust controller for a class of multi-input/multi-output nonlinear systems that contains unstructured uncertainties in their drift vectors and input matrices. The proposed controller compensates uncertainties in the system dynamics and achieves asymptotic tracking while requiring only the knowledge of the sign of the leading principal minors of the input gain matrix. A Lyapunov-based argument backed up with an integral inequality is applied to prove the asymptotic stability of the closed-loop system. Simulation results are presented to illustrate the viability of the proposed method. 相似文献
18.
19.
提出了一种串联机器人的改进控制算法。采用一自适应模糊控制器,根据滑模到达条件对滑模切换增益进行估算,消除滑模控制中输出力矩的抖振现象,增强其对不确定性因素的适应能力。采用另一自适应模糊控制器对指数趋近律系数进行修正,改善由于大范围初始位姿产生的偏差而引起的大力矩和速度跳变问题。该方法无需确定被控对象的具体数学模型,具有强鲁棒性和高跟踪精度。基于Lyapunov方法进行了稳定性证明,保证控制系统的稳定性与收敛性。实验结果表明,该方法应用于串联机器人,跟踪效果良好并产生了平滑的力矩输出和速度输出。 相似文献
20.
针对超空泡航行体动态中的非线性项和未建模动态,以及由空泡形状改变引起的扰动问题,提出了一种基于自适应模糊滑模的纵平面运动控制器设计方法。该方法利用自适应模糊系统逼近超空泡航行体模型中的非线性不确定项;利用滑模控制对干扰的鲁棒性,克服逼近误差和干扰;最后用Lyapunov定理证明了闭环系统的稳定性。仿真结果表明,设计的控制器可有效克服滑行力的计算误差以及水动力参数的不确定性。 相似文献