首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electroless nickel–phosphorous (Ni–P) coating was chosen as an interlayer to improve the properties of the CrN/mild steel (MS) composite. A hypophosphite-reduced acid solution was used to first deposit electroless Ni–P onto MS substrates, and then the CrN overlayer was deposited by reactive r.f. magnetron sputtering onto the electroless Ni–P modified substrate. The electroless Ni–P layer crystallizes with the precipitation of a Ni3P phase during r.f. sputtering, and thus a coating–substrate composite of CrN/Ni–Ni3P/MS is formed. The electroless Ni–P coating increases the surface hardness of the steel substrate to more than three times. The surface hardness of the CrN coating modified by an electroless Ni–P interlayer exhibits a hardness higher than 2000 HK0.015. The usual substrate effect on the microhardness of the coatings is nearly eliminated with the complex coating feature, and a significant enhancement of surface hardness in the coating assembly is achieved. The corrosion tests indicate that the Ni–Ni3P/MS configuration exhibits a more positive Ecorr value (i.e. less electronegative) than CrN/MS and the corresponding potential curve is shifted toward the low-current side, indicating a better anti-corrosion performance. Through comparison of the Ecorr values and the polarization curves, it is demonstrated that the CrN/Ni–Ni3P/MS composite exhibits significantly higher corrosion resistance than the Ni–Ni3P/MS and CrN/MS coating configurations.  相似文献   

2.
Ternary Ni–P–W alloy coating was fabricated by the RF magnetron sputtering technique with dual targets of electroless nickel alloy and tungsten metal. The composition of both the alloy deposited and the sputtered targets were evaluated by electron probe microanalysis. The homogeneity of Ni–P targets fabricated by electroless nickel plating on copper plates was revealed from cross-sectional line profile analysis. Transitions in microstructure, in terms of the tungsten content in the as-deposited alloy deposit, were discussed using X-ray diffraction analysis. Results of microhardness tests showed that the surface hardness could be engineered by controlling the composition and microstructure in the Ni–P–W coating. A relatively high microhardness of approximately 1900 HK was observed for the ternary coating with high tungsten contents of 65 wt.%. The thermal stability could be enhanced by addition of tungsten into the deposit compared to the binary Ni–P sputtered coating.  相似文献   

3.
The formation of electroless Ni–B coatings obtained using a low temperature bath and evaluation of their characteristic properties are addressed in this paper. An alkaline bath having nickel chloride as the source of nickel and borohydride as the reducing agent was used to prepare the electroless Ni–B coatings. The influence of concentration of sodium borohydride in bath on the plating rate and the nickel/boron content of the resultant Ni–B coatings was studied. Selected coatings were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively, for assessing the phase content, phase transformation behaviour and magnetic properties. XRD patterns reveal that the structure of electroless Ni–B coatings in as-plated condition is a function of the boron content of the coating: higher the boron content, greater the amorphous nature of the coating and vice-versa. DSC traces exhibit two exothermic peaks around 300 and 420 °C, corresponding to the phase transformation of crystalline nickel and Ni3B phases at 300 °C and the transformation of a higher phase compound to Ni3B at 420 °C. VSM studies indicate that the magnetic properties of the coating is also a function of the boron content of the coating: higher the boron content, lesser the saturation magnetization.  相似文献   

4.
The microstructure and the erosive–corrosive wear (ECW) performance of laser-clad Ni–Cr3C2 and Ni–WC coatings with overlapping clad tracks (OCT) on a 0.2% C martensitic stainless steel were investigated by scanning electron microscopy (SEM), XRD, EDX techniques and ECW testing. The coating produced by completely dissolving Cr3C2 particles in laser melted pool is composed of austenite (γ) dendrites surrounded by a γ-M7C3 eutectic, whereas another one is of granular solidifying structure in which contains the incompletely dissolved WC particles. The microhardness of Ni–WC coating is higher than that of Ni–Cr3C2, about 300 HV average. The main reason of microhardness difference is that two coatings have different solidified structure. The comparison of ECW tests found that the reduction of ECW rate dose not occur with the increase of hardness. The Ni–Cr3C2 coating with lower hardness has a lower ECW rate with respect to the Ni–WC one. Both average ECW rate decreased by approximately 30% and 60% as compared to that of stainless steel substrate, and both coatings had different ECW mechanism. The increase of ECW resistance is closely related to structure state, kind and amount of carbides, microhardness and toughening ability of the clad layer.  相似文献   

5.
Friction and wear behavior of several hard materials   总被引:1,自引:0,他引:1  
Sliding friction, abrasion and erosion tests were performed on several materials: cemented carbides, partially stabilized zirconia (Mg–PSZ), electroless Ni–P coatings and SAE 4140 steel as reference material. Sliding friction test was carried out in a pin-on-disk system. A micro-abrasion test was performed using the ball cratering methods. The erosion test consisted an air stream carrying abrasive particles of SiC, impinging flat samples. Sizes of wear scars were determined by optical microscopy and laser profilometry. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) were employed to observe morphological and chemical features of worn surfaces. The sliding pin-on-disk results of Ni–P coating showed smooth variation of the friction coefficient (mean values of 0.16–0.21), as well as the lowest wear rate compare with the other evaluate materials. Experimental results of the micro-abrasion test showed linear behavior between wear volume and sliding distance for all the evaluate materials. Cemented carbides showed the lowest wear rates followed by SAE 4140 steel, Mg–PSZ and Ni–P coating, respectively. Erosion test values ranked evaluated materials from lower to higher eroded volume as follows: SAE 4140 Steel, Ni–P coating, cemented carbides and Mg–PSZ ceramic.  相似文献   

6.
Ni-P/Al2O3化学复合镀工艺研究   总被引:4,自引:0,他引:4  
采用正交设计法对Ni-P/Al2O3化学复合镀工艺进行了优化。研究了镀液成分,工艺参数对复合镀层厚度,显微硬度,耐蚀性,耐磨性的影响,结果表明,Ni-P/Al2O3化学复合镀层的显微硬度,耐磨性优于Ni-P化学镀层的,弥散分布的Al2O3颗粒能显著减缓复合镀层在较高温度下的软化趋势。  相似文献   

7.
Ni–P–BN composite coatings were successfully obtained on low carbon steel by the electroless plating technique. Deposits were characterized by the X-ray diffraction, scanning electron microscopy, and energy-dispersive analysis. The hardness and microstructure of as plated and heat treated Ni–P and Ni–P–BN composites were analyzed. Change in microstructure and higher hardness was noticed for the heattreated composite. The corrosion resistance of as plated and heat treated Ni–P and Ni–P–BN coatings was investigated by the Tafel plots and electrochemical impedance spectroscopy studies in 3.5 wt % NaCl. The heat-treated composite coatings exhibited enhanced corrosion resistance over that of Ni–P coatings.  相似文献   

8.
Ni-P金刚石化学复合镀层制备及摩擦磨损性能分析   总被引:1,自引:1,他引:0  
目的研究不同粒径微米金刚石对Ni-P金刚石化学复合镀层摩擦磨损性能的影响。方法选择出一组优良的Ni-P化学镀工艺参数,在镀液中分别加入不同粒径的金刚石微粒,制备含不同粒径微米级金刚石颗粒的化学复合镀层。用SEM和XRD,观察并分析了不同粒径金刚石对热处理前后Ni-P金刚石化学复合镀层微观形貌和组织结构的影响;通过硬度和摩擦磨损实验,研究了不同粒径金刚石颗粒对复合镀层硬度及摩擦磨损性能的影响。结果制备的复合镀层厚度为30μm左右,金刚石质量分数达到21%~25%,且金刚石均匀分散在Ni-P镀层中。热处理前镀层为非晶结构,经过400℃×2 h的热处理后,镀层晶化为硬度更高的Ni3P。金刚石能提高镀层硬度,其中粒径为9μm的复合镀层硬度最高,达到1261HV。Ni-P金刚石复合镀层的摩擦系数为0.4~0.52,随着金刚石粒径的增大,摩擦系数不断减小。金刚石使镀层的磨损机制发生了变化,随着金刚石粒径的增大,硬质合金球的磨损加剧。结论随着金刚石粒径的增大,镀层硬度增加,摩擦系数减小,耐磨性增大。  相似文献   

9.
采用化学复合镀法制备了Ni-P-纳米TiO2复合镀层,研究了纳米TiO2添加对Ni-P复合镀层的显微结构、硬度、耐磨性、孔隙率及耐蚀性的影响,并讨论了其影响机理。结果表明:纳米TiO2粒子较为均匀地分布在Ni基镀层,未发生明显团聚;纳米TiO2粒子的弥散强化作用,使复合镀层具有较高的表面硬度和良好的耐摩擦性能,晶化热处理后的复合镀层表面硬度达到了10 925 MPa,耐摩擦性能也显著提高。添加纳米TiO2粒子后,镀层的孔隙率增加,耐碱和耐盐腐蚀的能力稍有降低,耐HCl溶液腐蚀的能力较差。  相似文献   

10.
Copper composite coating with graphite (Cg) and/or silicon carbide (SiC) particles were deposited by electroless plating. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) showed that Cu particles were uniformly distributed. The obtained coating thickness was approximately ± 5 μm. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were used to characterise the structure and to study the phase transition of the coatings, respectively. Phases such as Cu, Cu2O, Cu3P, Cu3Si, SiC and Cg were observed from X-ray diffraction patterns and the presence of Cu2O, Cu3P and Cu3Si was confirmed by differential scanning calorimetry (DSC) studies. The results demonstrated that SiC and Cg particles have little influence on the phase transition of the coating. The hardness and wear resistance of Cu-P composite coatings were improved with the incorporation of SiC particles. The friction coefficient of Cu-P composite coatings decreased with the incorporation of Cg particles. Atomic force microscopy (AFM) results of coatings showed that the roughness of the coatings increased with the incorporation of SiC to the Cu-P coatings and decreased with the incorporation of Cg. Cu-P-Cg-SiC composite coatings showed a moderate roughness, hardness between Cu-P-SiC and Cu-P-Cg coatings, had low friction and good anti-wear properties. The anti corrosion resistance of the electroless Cu-P composite coatings on carbon steel were studied in 3.5% NaCl and 1 M HCl solutions by the potentiodynamic polarisation technique. The study revealed that the corrosion resistance increased with the incorporation of SiC particles in the Cu-P and Cu-P-Cg matrix but reduced with the incorporation of graphite.  相似文献   

11.
Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.  相似文献   

12.
沟引宁  黄伟九  朱翊 《表面技术》2014,43(1):16-20,43
目的提高镁合金的耐磨性、耐蚀性,扩大其应用领域。方法采用"磷酸+钼酸铵酸洗→HF活化"的方法进行前处理,直接在AZ91D镁合金表面化学镀Ni-P合金镀层和Ni-P-SiC复合镀层。对两种镀层的表面和截面形貌、成分、结构、硬度、耐蚀性及耐磨性进行了系统比较。结果在Ni-P合金镀层中引入SiC粉末后,镀层的胞状颗粒细化,硬度提高至643HV,但其腐蚀电流密度有所增大。结论与Ni-P合金镀层相比,Ni-P-SiC复合镀层的耐蚀性有所下降,但耐磨性能大大提高。  相似文献   

13.
Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni-P coatings were deposited on aluminium alloy substrate LM24 (Al-9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni-P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.  相似文献   

14.
Ni? P? TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were synthesized by adding TiO2 nanoparticles to Ni? P electroless plating solution. The effects of pH and anionic surfactant sodium dodecyl sulfate (SDS) on the chemical composition of Ni, P, and TiO2 in the coatings were investigated. Scanning electron microscope (SEM), energy dispersive spectrometer (EDX), and X‐ray diffractometer (XRD) were used to characterize the morphology, composition, and crystal structure of deposited coatings, respectively. The hardness of nanocomposite coatings was improved greatly compared to Ni? P coating especially after heat treatment. After heat treatment at 400 °C for 1 h, an increase in microhardness was observed for heat‐treated Ni? P coatings. The hardness was increased from 805 to 1050 Hv for Ni? P? TiO2 coating deposited at 9 g/LTiO2 concentration in the bath. The corrosion resistance of Ni? P? TiO2 coating was significantly increased compared to Ni? P coatings by incorporation of TiO2 nanoparticle.  相似文献   

15.
Ti–6Al–4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu–Ni–In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS2 on Ti–6Al–4V. The results show that the DLC and Ti/MoS2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu–Ni–In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu–Ni–In films.  相似文献   

16.
利用化学镀方法在TC4钛合金表面成功制备结合力良好的Ni-P合金耐磨层,研究了提高镀层结合力的方法,结合SEM、XRD、EDS等现代物理分析方法分析了不同温度热处理后镀层的组织结构,从而建立不同热处理温度、镀层结构与镀层硬度和耐磨性能的关系。结果表明:二次浸锌活化方法和热处理能显著提高镀层与基体的结合强度,经600℃热处理后镀层结合力达到35N。基材的硬度HV为3780MPa,磨损量为9.6mg,镀态镀层的硬度HV为5760MPa、磨损量为7.7mg。随着热处理温度升高Ni3P相增多,该相的弥散分布使镀层硬度增加,最高硬度HV达到9790MPa,但400℃后硬度降低,这是由于Ni3P相随着热处理温度的继续升高而发生偏聚,使弥散强化程度下降;镀层的磨损量随着热处理温度的升高而减小,说明耐磨性能随着热处理温度的升高而增强,600℃热处理后,虽然镀层晶粒长大、粗化及镀层硬度降低,但此时镀层晶格的完整性最佳,镀层塑性和韧性提高,所以耐磨性能最好。  相似文献   

17.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

18.
姜魁经  刘宏  吕媛媛  王朋 《表面技术》2016,45(10):20-27
目的研究两种激光退火工艺(线光斑无搭接扫描、圆光斑搭接扫描)对非晶态结构的Ni-4.6Mo-12.4P镀层晶化组织特征及硬度的影响。方法在Q235钢基体上化学沉积Ni-Mo-P镀层,然后用两种激光工艺对其进行热处理。通过XRD测试并结合Jade软件定量分析镀层晶化程度、结晶相质量分数及其晶粒尺寸,利用SEM/EDS确定镀层的成分及表面形貌,采用纳米压痕技术对镀层进行硬度测试,最后对两种激光工艺进行对比。结果 Ni-Mo-P镀层在线光斑扫描速度低于12 mm/s、圆光斑扫描速度低于10 mm/s时,发生Ni_3P晶化反应,同时伴有Ni-Mo固溶体形成。Ni_3P相的晶粒尺寸大于Ni/Ni-Mo相尺寸,但扫描速度为6 mm/s时,Ni/Ni-Mo相尺寸大于Ni_3P相尺寸。扫描速度相同时,线光斑扫描镀层比圆光斑扫描镀层获得更高的晶化程度和Ni_3P质量分数,而线光斑扫描的Ni_3P相尺寸小于圆光斑扫描的尺寸。扫描速度为6~10 mm/s时,除扫描速度10 mm/s外,线光斑扫描镀层的硬度较高。结论能量密度高的线光斑无搭接扫描比能量密度低的圆光斑搭接扫描更有利于Ni_3P相的析出,而圆光斑搭接扫描易于Ni_3P相尺寸的长大。镀层的硬度主要受Ni_3P相的尺寸及其质量分数的影响。  相似文献   

19.
采用XRD测试、硬度测试、接触角测量、表面自由能计算和抗垢能力测试等方法,研究热处理对Ni-Sn-P复合镀层组织结构和抗垢性能的影响,以及Sn含量对镀层抗垢性能的影响。结果表明,经热处理后Ni-Sn-P复合镀层结构由非晶态转变为晶态。300 ℃热处理的Ni-Sn-P复合镀层显微硬度达1072.4 HV,相比Ni-P镀层其硬度明显提高。当Sn含量为2 g/L时,Ni-Sn-P复合镀层具有最佳的抗垢性能,复合镀层的接触角为120.2°,且具有较低的表面能15 mJ/m2。Ni-Sn-P复合镀的污垢附着率显著降低,抗垢性能相比未处理的Q235碳钢基体和Ni-P镀层分别提高55%和46%。Sn颗粒的加入,提高了镀层的硬度和疏水性,但是随着Ni-Sn-P复合镀层中Sn含量的增加,复合镀层的抗垢性能逐渐下降。  相似文献   

20.
Ni-P-TiN化学复合镀层具有比Ni-P镀层更高的硬度和耐磨性,但其表面粗糙度大,与对偶件之间的摩擦因数高,应用潜力受到限制。通过在化学镀液中添加不同用量的纳米WS_(2)颗粒和固定用量的TiN颗粒,在低碳钢表面制备Ni-P-TiN-WS_(2)复合镀层。采用X射线能谱仪(EDS)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对镀层的化学成分(质量分数)、表面形貌及微观结构进行表征,并利用球盘式摩擦磨损试验机测试复合镀层的摩擦磨损性能。结果表明:纳米WS_(2)颗粒与纳米TiN颗粒的共沉积可使镀层表面更加致密、平整。随着镀液中纳米WS_(2)用量的增加,复合镀层的硬度先减小后增大,与氮化硅陶瓷球的摩擦因数则先升后降,磨损率显著下降,耐磨性增强。镀液中纳米WS_(2)粉末的用量为2.5 g/L时复合镀层的摩擦学性能最佳。纳米WS_(2)颗粒的加入及用量优化可显著改善复合镀层的综合性能,可为发展高耐磨低摩擦因数的先进涂层提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号