首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the adjunct cultures Lactococcus lactis ssp. diacetylactis, Brevibacterium linens BL2, Lactobacillus helveticus LH212, and Lactobacillus reuteri ATCC 23272 on volatile free fatty acid production in reduced-fat Edam cheese were studied. Lipase activity evaluation using p-nitrophenyl fatty acid ester substrates indicated that L. lactis ssp. diacetylactis showed the highest activity among the 4 adjunct cultures. Full-fat and 33% reduced-fat control cheeses (no adjunct) were made along with 5 treatments of reduced-fat cheeses, which included individual, and a mixture of the adjunct cultures. Volatile free fatty acids of cheeses were analyzed using static headspace analysis with 4-bromofluorobenzene as an internal standard. Changes in volatile free fatty acid concentrations were found in headspace gas of cheeses after 3-and 6-mo ripening. Acetic acid was the most abundant acid detected throughout ripening. Full-fat cheese had the highest relative amount of propionic acid among the cheeses. Certain adjunct cultures had a definite role in lipolysis at particular times. Reduced-fat cheese with L. lactis ssp. diacetylactis at 3-mo showed the highest levels of butyric, isovaleric, n-valeric, iso-caproic, and n-caproic acid. Reduced-fat cheese with Lactobacillus reuteri at 6 mo produced the highest relative concentration of isocaproic, n-caproic, and heptanoic, and the highest relative concentration of total acids.  相似文献   

2.
3.
In semi-soft cheeses, produced with pasteurised milk, raw milk and different starter cultures, the concentrations of cadaverine, histamine, phenylethylamine, putrescine and tyramine were investigated. The cultures (pasteurised milk cultures, raw milk cultures and starter cultures) strongly influenced the biogenic amine concentrations in the cheeses ripened for 5 months. Two cheeses made with identical pasteurised milk, but different ripening cultures, differed greatly in their total biogenic amine concentrations (51 vs 371?mg/kg). In general, the biogenic amine concentrations increased markedly between month 2 and month 3 of cheese ripening. The high content of enterococci and Enterobacteriaceae yielded the biogenic amine concentrations. In contrast, Lactobacilli did not seem to be important. However, unspecified bacteria have to be considered, since cheeses with comparable microbiological profiles differed enormously in their biogenic amine concentrations. Semi-soft cheeses produced from pasteurised milk showed remarkably lower total biogenic amine concentrations compared to semi-soft cheeses produced from raw milk (51–1096?mg/kg vs 1011–3133?mg/kg, depending also on the ripening cultures). The highest total biogenic amine concentration (4817?mg/kg) was detected in a cheese produced from raw milk that had been stored for 36?h. In this cheese, the concentrations of cadaverine, phenylethylamine, putrescine and tyramine were higher than in all other cheeses. The highest histamine concentration was found to be in another raw milk cheese (573?mg/kg).  相似文献   

4.
Three different commercial starter cultures, Choozit? MA 11 (MA ), Choozit? BT 01 (BT ) and Choozit? Feta A (Feta), were used to remedy textural and aromatic defects and improve the overall quality of low‐fat Tulum cheeses. Chemical and sensory analyses as well as electrophoresis were performed. Supplemental yoghurt bacteria and Lactobacillus helveticus were found to be key contributors in proteolysis with varying protein breakdown capacities. The results suggest that using appropriate culture combinations could result in low‐fat Tulum cheeses with better sensory characteristics and proteolysis rates.  相似文献   

5.
Triacylglycerol (TAG) composition by carbon number in 2 protected designation of origin cheeses, Mahón (cheese from cow milk) and Manchego (cheese from ewe milk) that were manufactured by 3 different producers was analyzed during cheese ripening using gas chromatography with a short capillary column. The TAG composition at different times during cheese ripening was also analyzed in cheeses from different batches produced at the same plant. Lipolysis levels in the Mahón and Manchego cheeses during ripening were low; free fatty acid values ranged from 2,500 to 4,000 ppm at the end of ripening. The TAG composition did not change significantly during ripening. The TAG values obtained from each cheese sample were substituted into the multiple regression equations that have been proposed to detect foreign fats in milk fat. The values obtained using the equations for bovine (proposed by the European Union) and ovine milk (proposed by our laboratory) were within the normal range. Accordingly, these equations can be considered useful for detecting foreign fat in these cheeses during the ripening period contemplated during this study.  相似文献   

6.
7.
The influence of two cheese-isolated Lactobacillus strains on cheese composition, acceptability and probiotic capacity was assessed. Soft cheeses with and without the addition of Lactobacillus plantarum I91 or Lactobacillus paracasei I90 were prepared. Gross composition was assessed and secondary proteolysis was described by soluble fractions and free amino acids profiles. Acceptability was determined by a panel of 98 non-trained consumers. Cheeses harboring added Lactobacillus strains were also studied in vivo to evaluate their probiotic capacity. Gross composition of the cheeses was similar for control and treated (Lactobacillus-added) cheeses. Peptidolysis increased in cheeses with added lactobacilli, which was evidenced by a higher free amino acid content. Overall, the acceptability of the cheeses was good: 65%–80% of the consumers said that they “liked very much” or “liked” the cheeses. Cheeses with L. plantarum I91 showed the highest changes in composition and proteolysis and were the most accepted ones. On the contrary, composition of cheeses with L. paracasei I90 was similar to that of the controls, but these samples were less accepted than cheeses without lactobacilli. The oral administration of cheese containing L. plantarum I91 or L. paracasei I90 proved to be safe and able to enhance the number of IgA + cells in the small intestine lamina propria of mice. The use of selected strains of NSLAB exerted a technological and probiotic role: it contributed to the standardization of cheese quality and induced benefic health effects at the gut mucosa in vivo.  相似文献   

8.
9.
Edam cheese was made from a mixture of cow/goat milk (1:1, v/v). The mixture of both milks was standardized to have 3.2% fat and a casein/fat ratio of 0.7, heated at 72 °C for 15 s, immediately cooled to 40 °C and divided into four portions. Acid fungal protease (Formase 200) was added at levels of 0.5, 1.0 and 2.0 g/kg of curd to the first three portions, and the last one was manufactured without the addition of acid fungal protease to serve as a control sample. The samples of control as well as those of different treatments were analysed for chemical and organoleptic properties when fresh and after 1, 2 and 3 months of storage at 12 ± 1 °C. The obtained results pointed out that the samples of Formase-treated-cheese exhibited higher values of soluble nitrogen/total nitrogen ratio (SN/TN), total volatile fatty acids (TVFA), titratable acidity (TA), and the flavour was developed faster as compared with the samples of control. A good quality Edam cheese could be produced with a high acceptability when Formase 200 was used at level of 1.0 and 2.0 g/kg of curd and the cheese was ripened for 2 months only.  相似文献   

10.
We studied the influence of the dose of milk-clotting enzyme on alphas1-CN degradation, soluble nitrogen production, and sensory profile for an Argentinean soft cheese: Cremoso Argentino. Five different types of cheeses were produced: 1) control cheeses with normal technology, 2) cheeses with inactivated milk-clotting enzyme, 3) cheeses with inactivated milk-clotting enzyme, without starter (acidified with glucono delta lactone), 4) cheeses with a half dose of milk-clotting enzyme, and 5) cheeses with a double dose of milk-clotting enzyme. Proteolysis was assessed by isoelectric focusing electrophoresis of the insoluble fraction at pH 4.6, followed by densitometric quantification. Soluble nitrogen at pH 4.6, expressed as a percentage of total nitrogen and defined as ripening index was also performed. A sensorial panel evaluated the cheeses at the end of ripening. The hydrolysis level of alphas1-CN depended on the milk-clotting enzyme dose used in cheese making. Cheeses without active coagulant did not show degradation at the end of ripening, while cheeses with half and whole doses showed proportional degradations to coagulant dose. Cheese with a double dose of coagulant did not show higher alphas1-CN hydrolysis than normal cheese. No difference was found between cheeses with and without microbiological starter, indicating that the selected culture, composed of thermophilic strains, was unable to attack the whole casein. A high linear correlation was found between ripening index and the relation Sensorial characteristics of cheeses agree with objective analysis. Cheeses without active coagulant were hard and crumbly, while cheeses with normal dose were soft and creamy.  相似文献   

11.
The effects of varying fat content in Cheddar cheese, from 6.3 to 32.5 g 100 g−1, on changes in pH, primary proteolysis and texture were monitored over a 225 d ripening period. Reduction in the fat content resulted in significant (P<0.05) increases in pH, moisture and protein contents and decreases in the concentration of moisture in the non-fat substance. The increase in pH as the fat content increased was attributed to the concomitant decrease in the lactate-to-protein ratio. Polyacrylamide gel electrophoresis showed that the concentration of intact casein decreased in all cheeses during ripening and that the rate of decrease was not affected by the fat content. However, for a given concentration of casein, αs1-casein was degraded more slowly, and β-casein more rapidly, as the fat content was reduced. The slower degradation of αs1-casein with decreased fat content coincided with a decrease in the ratio of residual chymosin activity to protein in the cheese. At most ripening times, reduction in the fat content resulted in significant increases in the concentration of intact casein, fracture stress, fracture strain, and cheese firmness. The effects of fat reduction on proteolysis and rheology are probably due to the interactive effects of the concomitant changes in composition.  相似文献   

12.
《International Dairy Journal》2005,15(6-9):719-732
Data on typical surface microflora of smeared semi-soft, soft and acid curd cheeses and the minimal composition of suitable surface starter cultures are reviewed. Cultures for semi-soft cheeses should contain Debaryomyces hansenii, Staphylococcus equorum, Corynebacterium casei, Microbacterium gubbeenense (or Arthrobacter nicotianae), and Brevibacterium linens. Apart from D. hansenii, soft cheese surface cultures should contain Geotrichum candidum, which is responsible for the typical appearance and aroma development. M. gubbeenense or A. nicotianae and B. linens are essential for soft cheese ripening, but C. casei is not. S. equorum, not regularly found on the surface of commercial soft cheeses, accelerated deacidification and smear development. Cultures for acid curd cheeses, produced from quarg, should contain Kluyveromyces marxianus and Candida krusei. Staphylococci seem to be essential for ripening. S. equorum can replace the non-food-grade S. saprophyticus that is always present on commercial acid curd cheeses. Suitable corynebacteria for spraying of cheeses are B. linens and C. variabile.  相似文献   

13.
《食品与发酵工业》2017,(4):125-128
采用商业发酵剂和传统筛选微生物组合发酵剂进行Edam干酪的制作,对干酪初始阶段和成熟末期的干酪香气和质构进行了测定。干酪香气采用气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometer,GC-MS)指纹图谱测定干酪中的芳香物质,测定结果显示:初始芳香物质种类较单一,包括稀丙醇、3-羟基-2-丁酮等,成熟末期包含3-甲基丁醇、正十二烷、乙偶姻、2,6-二甲基-4-庚醇等多种芳香成分,不同发酵剂对产品芳香物质组成影响较大。质构特性的研究表明,干酪成熟阶段硬度增加、黏性和弹性明显降低,不同发酵剂对硬度和黏性有一定影响。  相似文献   

14.
Medium (13%) and low (2%) fat imitation cheeses (pH 6 or 5.5) were flavoured with 5% w/w EMC containing 16%, 28% or 47% total free fatty acids (low to high levels of hydrolysis, respectively) and were examined by a sensory panel. Aroma active short-chain free fatty acids were monitored using gas chromatographic techniques. Regardless of cheese pH or EMC composition, panellists ranked all medium-fat cheeses similarly. Low-fat cheeses flavoured (pH 6 or 5.5) with low or medium lipolysis EMC were described as ‘well-balanced’ and ‘cheesy’ and were significantly more preferred to cheeses containing high hydrolysis EMCs. Low-fat cheeses were least preferred of all cheeses because of ‘very intense’ bursts of off-flavours. Lower pH cheeses were softer and less melting. Higher fat levels in imitation cheese modulated a greater retention of fat-based flavour compounds and improved their release during consumption more than did lower fat levels.  相似文献   

15.
16.
Raw milk cheeses have more intense flavours than cheeses made from pasteurized milk and harbour strains with potential adjunct properties. Two Lactobacillus paracasei strains, R-40926 and R-40937, were selected as potential adjunct cultures from a total of 734 isolates from good quality artisan raw milk Gouda-type cheeses on the basis of their prevalence in different cheese types and/or over several production batches, safety and technological parameters. Conventional culturing, isolation and identification and a combined PCR-DGGE approach using total cheese DNA extracts and DNA extracts obtained from culturable fractions were employed to monitor viability of the introduced adjuncts and their effect on the cheese microbiota. The control cheese made without adjuncts was dominated by members of the starter, i.e. Lactococcus lactis and Leuconostoc pseudomesenteroides. In the cheeses containing either R-40926 or R-40937, the respective adjuncts increased in number as ripening progressed indicating that both strains are well adapted to the cheese environment and can survive in a competitive environment in the presence of a commercial starter culture. Principal component analysis of cheese volatiles determined by steam distillation-extraction and gas chromatography-mass spectrometry could differentiate cheeses made with different concentrations of adjunct R-40926 from the control cheese, and these differences could be correlated to the proteolytic and lipolytic properties of this strain. Collectively, results from microbiological and metabolic analyses indicate that the screening procedure followed throughout this study was successful in delivering potential adjunct candidates to enrich or extend the flavour palette of artisan Gouda-type cheeses under more controlled conditions.  相似文献   

17.
Samples (32) of natural milk cultures used in the Santa Fe, Argentina, area for soft and semihard cheese production were examined. The microbial composition (including lactic acid microflora characterization) and technological parameters (acidifying and proteolytic activities) were evaluated. The cultures contained mainly thermophilic lactic acid bacteria, identified as Streptococcus salivarius subsp. thermophilus (96.8% of the total strains) and Enterococcus spp. The strains showed a low proteolytic activity. The isolates of S. salivarius subsp. thermophilus exhibited a widespread phage resistance. The nonlactic microflora comprised coliforms, yeasts, spore-forming bacteria and lactate fermentative bacteria. The samples showed an acidity level from 0.38 to 0.69% lactic acid (pH from 4.25 to 5.75). The acidifying activity was optimal at 45 degrees C. The advantages and disadvantages of the employment of natural milk starters are discussed.  相似文献   

18.
The triacylglycerol (TAG) compositions by carbon number during ripening of two Protected Designation of Origin (PDO) cheeses were analysed using short capillary column gas chromatography. Lipolysis levels were high in the Cabrales (blue cheese produced from cows’ milk or from blends of cows’ with goats’ milk) and Majorero goats’ milk cheeses at the end of ripening, with free fatty acid (FFA) levels of around 24 000 ppm and significant changes in the TAG composition. The level of lipolysis in an industrial blue cheese made from ewes’ milk was low, with an FFA value of around 6000 ppm and no significant changes in the TAG composition during ripening. The TAG values recorded for each cheese sample were substituted into the multiple regression equations that have been proposed for use in detecting foreign fats in milk fat. The values thus obtained were within the established ranges in early ripening. In the cheeses with high lipolysis levels during ripening, some of the values obtained fell outside the established ranges. These equations can be potentially useful for detecting foreign fats in these cheeses, when employed early in the ripening period. Furthermore, it is important to take into account that before coming to a conclusion about cheese authenticity, several individual samples should be analysed.  相似文献   

19.
Antioxidant activity of Cheddar cheeses at different stages of ripening   总被引:1,自引:0,他引:1  
The aim of the study was to evaluate the changes in the antioxidant properties of Cheddar cheese at different stages of ripening using different assays: 2, 2'-azinobis (3 ethyl benzothiazoline)-6-sulphonic acid, 2, 2-diphenyl 1, picryl hydrazyl and superoxide radical scavenging activity. Cheddar cheese was prepared with Lactobacillus casei ssp. casei 300 and Lactobacillus paracasei ssp. paracasei 22 and without adjunct cultures. The antioxidant activity of water-soluble extracts of Cheddar cheese was dependent on the ripening period. The changes in the antioxidant activity were related to the rate of formation of soluble peptides (proteolysis) in all the samples of cheeses up to fourth month of ripening.  相似文献   

20.
The objective of this investigation was to compare the composition and changes in the concentration of volatiles in low‐fat and full‐fat Tulum cheeses during ripening. Tulum cheese was manufactured from low‐ or full‐fat milk using exopolysaccharide (EPS)‐producing or non‐EPS‐producing starter cultures. A total of 82 volatile compounds were identified belonging to the following chemical groups: acids (seven), esters (21), ketones (14), aldehydes (six), alcohols (14) and miscellaneous compounds (20). The relative amounts of acids, alcohols and aldehydes increased in the cheeses made with EPS‐producing cultures during 90 days of ripening. Differences were found in the volatile profile of full‐fat Tulum cheese compared with the low‐fat variant, especially after 90 days of ripening. Exopolysaccharide‐producing cultures changed the volatile profile, and the EPS‐producing cultures including Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus + Lactobacillus helveticus (LF‐EPS2) produced cheese with higher levels of methyl ketones and aldehydes than the non‐EPS cultures. In the sensory analysis, full‐fat Tulum cheeses and the cheese produced with the EPS‐producing culture containing Lb. helveticus (LF‐EPS2) were preferred by the expert panel. It was concluded that the use of EPS‐producing starter cultures in the manufacture of low‐fat Tulum cheese had the potential to improve the flavour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号