首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.  相似文献   

2.
The known mammalian 3':5'-cyclic nucleotide phosphodiesterases (PDEs) contain a conserved region located toward the carboxyl terminus, which constitutes a catalytic domain. To identify amino acids that are important for catalysis, we introduced substitutions at 23 conserved residues within the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE; PDE5). Wild-type and mutant proteins were compared with respect to Km for cGMP, kcat, and IC50 for zaprinast. The most dramatic decrease in kcat was seen with H643A and D754A mutants with the decrease in free energy of binding (DeltaDeltaGT) being about 4.5 kcal/mol for each, which is within the range predicted for loss of a hydrogen bond involving a charged residue. His643 and Asp754 are conserved in all known PDEs and are strong candidates to be directly involved in catalysis. Substitutions of His603, His607, His647, Glu672, and Asp714 also produced marked changes in kcat, and these residues are likely to be important for efficient catalysis. The Y602A and E775A mutants exhibited the most dramatic increases in Km for cGMP, with calculated DeltaDeltaGT of 2.9 and 2.8 kcal/mol, respectively, that these two residues are important for cGMP binding in the catalytic site. Zaprinast is a potent competitive inhibitor of cGB-PDE, but the key residues for its binding differ significantly from those that bind cGMP.  相似文献   

3.
We examined c-Ha-Ras harboring an aspartate to asparagine substitution at position 119 (mutation D119N). The Asp-119 is part of the conserved NKXD motif shared by members of the regulatory GTPase family. This asparagine residue has been proposed to participate in direct bonding to the guanine ring and to determine the guanine-nucleotide binding specificity. The D119N mutation was found to alter nucleotide specificity of Ha-Ras from guanine to xanthine, an observation that directly supports the essential role of hydrogen bonding between the side chain of the aspartic acid residue and the guanine ring in nucleotide binding specificity. Besides nucleotide binding specificity, the D119N mutation has little or no effect on the interaction of Ha-Ras with SDC25C, SOS1, GAP, or Raf. Neither does it affect the hydrolysis of nucleotide triphosphate. Like xanthine-nucleotide-specific EF-Tu, xanthine-nucleotide-specific Ras and related proteins will be useful tools for elucidating cellular systems containing multiple regulatory GTPases.  相似文献   

4.
Enzymic catalysts of thiol:disulfide oxidoreduction contain two cysteine residues in their active sites. Another common residue is an aspartate (or glutamate), the role of which has been unclear. Escherichia coli thioredoxin (Trx) is the best characterized thiol:disulfide oxidoreductase, and in Trx these three active-site residues are Cys32, Cys35, and Asp26. Structural analyses had indicated that the carboxylate of Asp26 is positioned properly for the deprotonation of the thiol of Cys35, which would facilitate its attack on Cys32 in enzyme-substrate mixed disulfides. Here, Asp26 of Trx was replaced with isologous asparagine and leucine residues. D26N Trx and D26L Trx are reduced and oxidized more slowly than is wild-type Trx during catalysis by E.coli thioredoxin reductase. Stopped-flow spectroscopy demonstrated that the cleavage of the mixed disulfide between Trx and a substrate is slower in the D26N and D26L enzymes. Buffers increase the rate of mixed disulfide cleavage in these variants but not in wild-type Trx. These results indicate that Asp26 serves as an acid/base in the oxidation/reduction reactions catalyzed by Trx. Specifically, Asp26 protonates (during substrate oxidation) or deprotonates (during substrate reduction) the thiol of Cys35. A similar role is likely filled by the analogous aspartate (or glutamate) residue in protein disulfide isomerase, DsbA, and other thiol:disulfide oxidoreductases. Moreover, these results provide the first evidence for general acid/base catalysis in a thiol:disulfide interchange reaction.  相似文献   

5.
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

6.
The distal His in peroxidases forms a hydrogen bond with the adjacent Asn, which is highly conserved among many plant and fungal peroxidases. Our previous work [Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y., & Morishima, I. (1996) Biochemistry 35, 14251-14258] has revealed that the replacement of Asn70 in horseradish peroxidase C (HRP) by Val (N70V) and Asp (N70D) discourages the oxidation activity for guaiacol, and the elementary reaction rate constants for the mutants was decreased by 10-15-fold. In order to delineate the structure-function relationship of the His-Asn couple in peroxidase activity, heme environmental structures of the HRP mutant, N70D, were investigated by CD, 1H NMR, and IR spectroscopies as well as Fe2+/Fe3+ redox potential measurements. While N70D mutant exhibited quite similar CD spectra and redox potential to those of native enzyme, the paramagnetic NMR spectrum clearly showed that the hydrogen bond between the distal His and Asp70 is not formed in the mutant. The disappearance of the splitting in the 1H NMR signal of heme peripheral 8-methyl group observed in 50% H2O/50% D2O solution of N70D-CN suggests that the hydrogen bond between the distal His and heme-bound cyanide is also disrupted by the mutation, which was supported by the low C-N vibration frequency and large dissociation constant of the heme-bound cyanide in the mutant. Together with the results from various spectroscopies and redox potentials, we can conclude that the improper positioning of the distal His induced the cleavages of the hydrogen bonds around the distal His, resulting in the substantial decrease of the catalytic activity without large structural alterations of the enzyme. The His-Asn hydrogen bond in the distal site of peroxidases, therefore, is essential for the catalytic activity by controlling the precise location of the distal His.  相似文献   

7.
The structures of the sugar kinase/heat shock 70/actin superfamily of enzymes show that the active site is located in a deep cleft between two domains whose relative movement defines a domain closure conformational change thought to be involved in the catalytic and regulatory properties of members of the superfamily. To investigate the role of the domain closure in the regulatory behavior, site-directed mutagenesis is used to alter specific domain-domain interactions in Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase), a member of this superfamily. Two active site aspartate residues are conserved throughout the superfamily, one (Asp245 in glycerol kinase) which is proposed to act as a general base during catalysis and one (Asp10 in glycerol kinase) which interacts with the Mg(II) ion of the bound Mg(II)-nucleotide complex. Each of these residues participates in domain-domain interactions that are mediated by the bound substrates. The enzymes containing the substitutions Asp245 to Asn (D245N) or Asp10 to Asn (D10N) were purified by affinity chromatography, and the effects of the substitutions on the catalytic properties and regulation by the allosteric effectors, fructose 1,6-bisphosphate (FBP), and the glucose-specific phosphocarrier protein, IIIGlc (also known as IIAGlc), were determined. Each of the residues participates in catalysis; kcat/Katp is decreased 300-fold by the D245N substitution and 100-fold by the D10N substitution. Affinity labeling with the glycerol analog 1,3-dichloroacetone shows that the level of activity seen for the D245N mutant enzyme is not due to deamidation of the substituted asparagine. Each of the substitutions has little effect on regulation by FBP and the apparent affinity for IIIGlc, and the D245N substitution does not affect the extent of inhibition by IIIGlc. However, the D10N substitution decreases the maximum extent of inhibition by IIIGlc from 100 to 60%, thus changing the action of IIIGlc to that of a partial inhibitor. The different sensitivities of the extents of FBP and IIIGlc inhibition to perturbation of a domain-domain interaction mediated by Asp10 suggest that the relations of the actions of these allosteric effectors to the domain closure conformational change are different.  相似文献   

8.
Bacterial Delta5-3-ketosteroid isomerase (KSI) catalyzes a stereospecific isomerization of steroid substrates at an extremely fast rate, overcoming a large disparity of pKa values between a catalytic residue and its target. The crystal structures of KSI from Pseudomonas putida and of the enzyme in complex with equilenin, an analogue of the reaction intermediate, have been determined at 1.9 and 2.5 A resolution, respectively. The structures reveal that the side chains of Tyr14 and Asp99 (a newly identified catalytic residue) form hydrogen bonds directly with the oxyanion of the bound inhibitor in a completely apolar milieu of the active site. No water molecule is found at the active site, and the access of bulk solvent is blocked by a layer of apolar residues. Asp99 is surrounded by six apolar residues, and consequently, its pKa appears to be elevated as high as 9.5 to be consistent with early studies. No interaction was found between the bound inhibitor and the residue 101 (phenylalanine in Pseudomonas testosteroni and methionine in P. putida KSI) which was suggested to contribute significantly to the rate enhancement based on mutational analysis. This observation excludes the residue 101 as a potential catalytic residue and requires that the rate enhancement should be explained solely by Tyr14 and Asp99. Kinetic analyses of Y14F and D99L mutant enzymes demonstrate that Tyr14 contributes much more significantly to the rate enhancement than Asp99. Previous studies and the structural analysis strongly suggest that the low-barrier hydrogen bond of Tyr14 (>7.1 kcal/mol), along with a moderate strength hydrogen bond of Asp99 ( approximately 4 kcal/mol), accounts for the required energy of 11 kcal/mol for the transition-state stabilization.  相似文献   

9.
Glu-198 of human matrilysin is a conserved residue in the matrix metalloproteinases and is considered to play an important role in catalysis by acting as a general base catalyst toward the zinc-bound water molecule, on the basis of mechanistic proposals for other zinc proteases. In the present study, Glu-198 is mutated into Asp, Cys, Gln, and Ala, and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of Glu-198 in catalysis. The mutations chosen either modify (C and D) or eliminate (A and Q) the general base properties of residue-198. All the mutants bind 2 mol of zinc per mol of enzyme, indicating that Glu-198 is not crucial to the binding of the catalytic zinc to the enzyme. The value of kcat/Km for the E198D mutant is only 4-fold lower than that of wild-type enzyme at the pH optimum of 7.5, while that for the E198C mutant is decreased by 160-fold. The E198Q and E198A enzymes containing the mutations that have eliminated the nucleophilic and acid/base properties of the residue are still active, having lower kcat/Km values of 590- and 1900-fold, respectively. The decrease in activity of all the mutants is essentially due to a decrease in kcat. The kcat/Km values of the mutants as a function of pH display broad bell-shaped curves that are similar to the wild-type enzyme. The acidic pKa value is not greatly affected by the change in the chemical properties of residue-198. The similarity in the pH profiles for the mutant and wild-type enzymes indicates that the ionization of Glu-198 is not responsible for the acidic pKa. Ionization of the zinc-bound water may be responsible for this pKa since the three His ligands and the scaffolding of the matrilysin catalytic zinc site are different from that observed in carboxypeptidase A and would predict a lower pKa for the metal-bound water. If the zinc-bound water is the nucleophile in the reaction, the role of Glu-198 in catalysis may be to stabilize the transition state or act as a general acid catalyst after the rate-determining step.  相似文献   

10.
The catalytic triad consisting of His57, Asp102 and Ser195, which is completely conserved within the chymotrypsin-like serine protease family, plays a central role in catalysis. Highly conserved Ala55 also likely plays an important role in catalysis due to its location just behind the catalytic triad. The only exception to the conserved Ala55 in mammalian serine proteases is Val55 in bovine protein C. Interestingly, it has been demonstrated that the replacement of Ala55 with Thr results in the reduced activity of plasmin in patients with venous thrombosis and with retinochoroidal vascular disorders, which indicates the importance of Ala55 in catalysis. In the present study, we constructed a bovine protein C model which shows that Val55 causes no serious rearrangement of the catalytic site structure. We also constructed an A55T variant model of trypsin for comparison. The A55T substitution alters His57 into an inactive conformation, forming an unusual hydrogen bond between Thr55 O gamma 1 and His57 N epsilon 2. The present study shows that the Ala/Val55 residue contributes heavily to the active conformation of His57 and enables His57 to accept a proton from Ser195 O gamma effectively.  相似文献   

11.
A hydrogen-bonded catalytic radical transfer pathway in Escherichia coli ribonucleotide reductase (RNR) is evident from the three-dimensional structures of the R1 and R2 proteins, phylogenetic studies, and site-directed mutagenesis experiments. Current knowledge of electron transfer processes is difficult to apply to the very long radical transfer pathway in RNR. To explore the importance of the hydrogen bonds between the participating residues, we converted the protein R2 residue Asp237, one of the conserved residues along the radical transfer route, to an asparagine and a glutamate residue in two separate mutant proteins. In this study, we show that the D237E mutant is catalytically active and has hydrogen bond connections similar to that of the wild type protein. This is the first reported mutant protein that affects the radical transfer pathway while catalytic activity is preserved. The D237N mutant is catalytically inactive, and its tyrosyl radical is unstable, although the mutant can form a diferric-oxo iron center and a R1-R2 complex. The data strongly support our hypothesis that an absolute requirement for radical transfer during catalysis in ribonucleotide reductase is an intact hydrogen-bonded pathway between the radical site in protein R2 and the substrate binding site in R1. Our data thus strongly favor the idea that the electron transfer mechanism in RNR is coupled with proton transfer, i.e. a radical transfer mechanism.  相似文献   

12.
Although the beta-adrenergic receptor antagonist (-)-propranolol binds with relatively low affinity at human 5-hydroxytryptamine1D beta receptors (Ki = 10,200 nM), it displays significantly higher affinity (Ki = 17 nM) at its species homolog, 5-HT1B receptors, and at a mutant 5-HT1D beta receptor (Ki = 16 nM), where the threonine residue at position 355 (T355) is replaced with an asparagine residue (i.e., a T355N mutant). Propranolol contains two oxygen atoms, an ether oxygen atom and a hydroxyl oxygen atom, and it has been speculated that the enhanced affinity of propranolol for the T355N mutant receptor is related to the ability of the asparagine residue to hydrogen bond with the ether oxygen atom. However, the specific involvement of the propranolol oxygen atoms in binding to the wild-type and T355N mutant 5-HT1D beta receptors has never been addressed experimentally. A modification of a previously described 5-HT1D beta receptor graphic model was mutated by replacement of T355 with asparagine. Propranolol was docked with the wild-type and T355N mutant 5-HT1D beta receptor models in an attempt to understand the difference in affinity of the ligand for the receptors. The binding models suggest that the asparagine residue of the mutant receptor can form hydrogen bonds with both oxygen atoms of propranolol, whereas the threonine moiety of the wild-type receptor can hydrogen-bond only to one oxygen atom. To test this hypothesis, we prepared and examined several analogues of propranolol that lacked either one or both oxygen atoms. The results of radioligand binding experiments are consistent with the hypothesis that both oxygen atoms of propranolol could participate in binding to the mutant receptor, whereas only the ether oxygen atom participates in binding to the wild-type receptor. As such, this is the first investigation of serotonin receptors that combines the use of molecular modeling, mutant receptors generated by site-directed mutagenesis, and synthesis to investigate structure/affinity relationships.  相似文献   

13.
A mutant of Lactobacillus casei dihydrofolate reductase, D26N, in which the active site aspartic acid residue has been replaced by asparagine by oligonucleotide-directed mutagenesis has been studied by NMR and optical spectroscopy and its kinetic behavior characterized in detail. On the basis of comparisons of a large number of chemical shifts and NOEs, it is clear that there are only very slight structural differences between the methotrexate complexes of the wild-type and mutant enzymes and that these are restricted to the immediate environment of the substitution. The data suggest a slight difference in orientation of the pteridine ring in the binding site in the mutant enzyme. Both NMR and UV spectroscopy show that methotrexate is protonated on N1 when bound to the wild-type enzyme but not when bound to the mutant. Binding constant measurements by fluorescence quenching and steady-state kinetic measurements of dihydrofolate (FH2) and folate reduction show that the substitution has little or no effect on substrate, coenzyme, and inhibitor binding (< 7-fold increase in Kd) and only a modest effect on kcat (up to a factor of 9 for FH2 and 25 for folate) and kcat/KM (up to a factor of 13 for FH2 and 14 for folate). Measurements of deuterium isotope effects and direct measurements of hydride ion transfer and product release by stopped-flow methods revealed that for the mutant enzyme hydride ion transfer is rate-limiting across the pH range 5-8. This allowed a direct comparison of the rate of hydride ion transfer in the wild-type and mutant enzymes; the asparagine substitution was found to decrease this rate by 62-fold at pH 5.5 and 9-fold at pH 7.5. This effect is much smaller than that seen for the corresponding mutant of Escherichia coli dihydrofolate reductase [Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., & Kraut, J. (1986) Science 231, 1123-1128], estimated as a 1000-fold decrease in the rate of hydride ion transfer. The change in pH dependence of kcat resulting from the substitution is consistent with, but does not prove, the idea that the group of pK 6.0 which must be protonated for hydride ion transfer to occur is Asp26. For folate reduction, the pH dependence of kcat is determined by two pKs, one of which, pK 5, disappears in the mutant enzyme, suggesting that it may correspond to ionization of Asp26.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Qy-excitation resonance Raman (RR) studies are reported for a series of Rhodobacter capsulatus reaction centers (RCs) containing mutations at L-polypeptide residue 121 near the photoactive bacteriopheophytin (BPhL). The studies focus on the electronic/structural perturbations of BPhL induced by replacing the native Phe with an Asp residue. Earlier work has shown that the electron-transfer properties of F(L121)D RCs are closely related to those of RCs in which BPhL is replaced by bacteriochlorophyll (BChl) (beta-type RCs) or by pheophytin. In addition to the F(L121)D single mutant, RR studies were performed on the F(L121)D/E(L104)L double mutant, which additionally removes the hydrogen bond between BPhL and the native Glu L104 residue. The vibrational signatures of BPhL in the single and double mutants containing Asp L121 are compared with one another and with those of BPhL in both wild-type and F(L121)L RCs. The replacement of the aromatic Phe residue with Leu has no discernible effect on the vibrational properties of BPhL, a finding in concert with the previously reported absence of an effect of the mutation on the electron-transfer characteristics of the RC. In contrast, replacement of Phe with Asp significantly perturbs the vibrational characteristics of BPhL, and in a manner most consistent with Asp L121 being deprotonated and negatively charged. The negative charge of the carboxyl group of Asp L121 interacts with the pi-electron system of BPhL in a relatively nonspecific fashion, diminishing the contribution of charge-separated resonance forms of the C9-keto group to the electronic structure of the cofactor. The presence of a negative charge near BPhL is consistent with the known photochemistry of F(L121)D RCs, which indicates that the free energy of P+BPhL- is substantially higher than in wild-type RCs.  相似文献   

15.
Within the papain family of cysteine proteinases few other residues in addition to the catalytic triad, Cys25-His159-Asn175 (papain numbering) are completely conserved [Berti & Storer (1995) J. Mol. Biol. 246, 273-283]. One such residue is tryptophan 177 which participates in a Trp-His-type interaction with the catalytic His159. In all enzymes of this class for which a three-dimensional structure has been reported, an additional highly conserved tryptophan, Trp181, also interacts with Trp177 via an aromatic-aromatic interaction in which the planes of the indole rings are essentially perpendicular. Also, both indole rings participate as pseudo-hydrogen bond acceptors in interactions with the two side chain amide protons of Asn175. Clearly, the proximity of Trp177 and Trp181 to the catalytic triad residues His159 and Asn175 and their network of interactions points to potential contributions of these aromatic residues to catalysis. In this paper, using cathepsin S, a naturally occurring variant that has a phenylalanine residue at position 181, we report the kinetic characterization of mutants of residues 175, 177, and 181. The results are interpreted in terms of the side chain contributions to catalytic activity and thiolate-imidazolium ion-pair stability. For example, the side chain of Asn175 has a major influence on the ion-pair stability presumably through its hydrogen bond to His159. The magnitude of this effect is modulated by Trp177, which shields the His159-Asn175 hydrogen bond from solvent. The His159-Trp177 interaction also contributes significantly to ion-pair stability; however, Trp181 and its interactions with Asn175 and Trp177 do not influence ion-pair stability to a significant degree. The observation that certain mutations at positions 177 and 181 result in a reduction of kcat/Km but do not appear to influence ion-pair stability probably reflects the contributions of these residues to substrate binding.  相似文献   

16.
The conserved residue Asp477 in yeast transketolase is located in the substrate channel of the enzyme and forms a hydrogen bond with the C2-hydroxyl group of the acceptor substrate. The significance of this interaction for the recognition of the preferred acceptor substrates, D-alpha-hydroxyaldehydes was investigated by site-directed mutagenesis. In the wild-type enzyme the kcat/KM values are by three to four orders of magnitude lower for 2-deoxyaldoses or substrates with L-configuration at the C2-atom. In the Asp477 Ala mutant, the kcat/KM values for D-alpha-hydroxyaldehydes are decreased by a thousandfold, while the kcat/KM values for substrates with L-configuration or 2-deoxyaldoses are similar to wild-type enzyme. These results indicate that Asp477 is involved in determining the enantioselectivity of transketolase.  相似文献   

17.
In the N-terminal region of the alpha-helix of the c-type lysozymes, two Asx residues exist at the 18th and 27th positions. Hen lysozyme has Asp18/Asn27 (18D/27N), and we prepared three mutant lysozymes, Asn18/Asn27 (18N/27N), Asn18/Asp27 (18N/27D), and Asp18/Asp27 (18D/27D). The stability of the wild-type (18D/27N) lysozyme supported the existence of a hydrogen bond between the side chain of Asp18 and the amide group at the N1 position in the alpha-helix, while the stability of the 18N/27D lysozyme supported the presence of the capping box between the Ser24 (N-cap) and Asp27 residues. Although electrostatic repulsion was observed between Asp18 and Asp27 residues in 18D/27D lysozyme, the dissociation of each residue contributed to stabilizing the B-helix in 18D/27D lysozyme through hydrogen bonding and charge-helix macrodipole interaction. This is the first evidence that two neighboring negative charges at the N-terminus of the helix both increased the stability of the protein.  相似文献   

18.
Methylglyoxal synthase provides bacteria with an alternative to triosephosphate isomerase for metabolizing dihydroxyacetone phosphate (DHAP). In the present studies, the methylglyoxal synthase gene in Escherichia coli has been cloned and sequenced. The identified open reading frame (ORF) codes for a polypeptide of 152 amino acids, consistent with the 17 kDa purified protein. The sequence of this protein is not similar to any other protein of known function, including the functionally similar protein triosephosphate isomerase. The methylglyoxal synthase gene was amplified by PCR, subcloned into the pET16B expression vector, and expressed in the host E. coli BL21(DE3). Sequence comparison of the methylglyoxal protein and related ORFs from four different bacterial species revealed that four aspartic acid and no glutamic acid residues are absolutely conserved. The function of the four aspartic acid residues was tested by mutating them to either asparagine or glutamic acid. Thermal denaturation, CD spectroscopy, and gel filtration experiments showed that the mutant enzymes had the same secondary and quaternary structure as the wild-type enzyme. Kinetic characterization of both Asp 71 and Asp 101 mutant proteins shows reduced kcat/Km by 10(3)- and 10(4)-fold respectively, suggesting that they are both intimately involved in catalysis. A time-dependent inhibition of both Asp 20 and Asp 91 asparagine mutants by DHAP suggests that these two residues are involved with protecting the enzyme from DHAP or reactive intermediates along the catalytic pathway. In combination with the results of 2-phosphoglycolate binding studies, a catalytic mechanism is proposed.  相似文献   

19.
Mammalian alkaline phosphatases (APs) display 10-100-fold higher kcat values than do bacterial APs. To begin uncovering the critical residues that determine the catalytic efficiency of mammalian APs, we have compared the sequence of two bovine intestinal APs, i.e. a moderately active isozyme (bovine intestinal alkaline phosphatase, bIAP I, approximately 3,000 units/mg) previously cloned in our laboratory, and a highly active isozyme (bIAP II, approximately 8, 000 units/mg) of hitherto unknown sequence. An unprecedented level of complexity was revealed for the bovine AP family of genes during our attempts to clone the bIAP II cDNA from cow intestinal RNAs. We cloned and characterized two novel full-length IAP cDNAs (bIAP III and bIAP IV) and obtained partial sequences for three other IAP cDNAs (bIAP V, VI, and VII). Moreover, we identified and partially cloned a gene coding for a second tissue nonspecific AP (TNAP-2). However, the cDNA for bIAP II, appeared unclonable. The sequence of the entire bIAP II isozyme was determined instead by a classical protein sequencing strategy using trypsin, carboxypeptidase, and endoproteinase Lys-C, Asp-N, and Glu-C digestions, as well as cyanogen bromide cleavage and NH2-terminal sequencing. A chimeric bIAP II cDNA was then constructed by ligating wild-type and mutagenized fragments of bIAP I, III, and IV to build a cDNA encoding the identified bIAP II sequence. Expression and enzymatic characterization of the recombinant bIAP I, II, III, and IV isozymes revealed average kcat values of 1800, 5900, 4200, and 6100 s-1, respectively. Comparison of the bIAP I and bIAP II sequences identified 24 amino acid positions as likely candidates to explain differences in kcat. Site-directed mutagenesis and kinetic studies revealed that a G322D mutation in bIAP II reduced its kcat to 1300 s-1, while the converse mutation, i.e. D322G, in bIAP I increased its kcat to 5800 s-1. Other mutations in bIAP II had no effect on its kinetic properties. Our data clearly indicate that residue 322 is the major determinant of the high catalytic turnover in bovine IAPs. This residue is not directly involved in the mechanism of catalysis but is spatially sufficiently close to the active site to influence substrate positioning and hydrolysis of the phosphoenzyme complex.  相似文献   

20.
The essential active site Fe3+ of protocatechuate 3,4-dioxygenase [3, 4-PCD, subunit structure (alphabetaFe3+)12] is bound by axial ligands, Tyr447 (147beta) and His462 (162beta), and equatorial ligands, Tyr408 (108beta), His460 (160beta), and a solvent OH- (Wat827). Recent X-ray crystallographic studies have shown that Tyr447 is dissociated from the Fe3+ in the anaerobic 3,4-PCD complex with protocatechuate (PCA) [Orville, A. M., Lipscomb, J. D., and Ohlendorf, D. H. (1997) Biochemistry 36, 10052-10066]. The importance of Tyr447 to catalysis is investigated here by site-directed mutation of this residue to His (Y447H), the first such mutation reported for an aromatic ring cleavage dioxygenase containing Fe3+. The crystal structure of Y447H (2.1 A resolution, R-factor of 0.181) is essentially unchanged from that of the native enzyme outside of the active site region. The side chain position of His447 is stabilized by a His447(N)delta1-Pro448(O) hydrogen bond, placing the Nepsilon2 atom of His447 out of bonding distance of the iron ( approximately 4.3 A). Wat827 appears to be replaced by a CO32-, thereby retaining the overall charge neutrality and coordination number of the Fe3+ center. Quantitative metal and amino acid analysis shows that Y447H binds Fe3+ in approximately 10 of the 12 active sites of 3,4-PCD, but its kcat is nearly 600-fold lower than that of the native enzyme. Single-turnover kinetic analysis of the Y447H-catalyzed reaction reveals that slow substrate binding accounts for the decreased kcat. Three new kinetically competent intermediates in this process are revealed. Similarly, the product dissociation from Y447H is slow and occurs in two resolved steps, including a previously unreported intermediate. The final E.PCA complex (ES4) and the putative E.product complex (ESO2*) are found to have optical spectra that are indistinguishable from those of the analogous intermediates of the wild-type enzyme cycle, while all of the other observed intermediates have novel spectra. Once the E.S complex is formed, reaction with O2 is fast. These results suggest that dissociation of Tyr447 occurs during turnover of 3,4-PCD and is important in the substrate binding and product release processes. Once Tyr447 is removed from the Fe3+ in the final E.PCA complex by either dissociation or mutagenesis, the O2 attack and insertion steps proceed efficiently, suggesting that Tyr447 does not have a large role in this phase of the reaction. This study demonstrates a novel role for Tyr in a biological system and allows evaluation and refinement of the proposed Fe3+ dioxygenase mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号