首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为分析单裂纹或多裂纹在裂纹面承受疲劳拉伸载荷作用下尖端应力强度因子变化规律和裂纹形貌变化以及疲劳寿命情况,以含不同初始长深比的半椭圆单裂纹或双裂纹的薄片试样为研究对象,对试样在应力比R=0.1的疲劳拉伸载荷下单裂纹或双裂纹情况进行了仿真分析。建立含裂纹试样的有限元模型,仿真分析了裂纹在扩展过程中尖端应力强度因子的分布情况,并将单裂纹扩展结果与双裂纹相互作用影响下的结果进行了对比研究;进行含裂纹试样的疲劳实验,分析了含单裂纹或双裂纹的试样的断裂面的形成原因,并验证仿真结果正确性。结果表明,裂纹面之间的相互作用会逐渐影响裂纹的扩展方向、扩展速率以及在扩展过程中尖端应力强度因子的变化趋势;而且初始形貌为半椭圆形的双裂纹在相互作用影响下会逐渐过渡到半圆形。  相似文献   

2.
3.
THE SHORT CRACK PROBLEM   总被引:4,自引:0,他引:4  
Abstract— The problem associated with short crack growth, defined as situations in which the intensity of the crack tip field is underestimated by linear elastic fracture mechanics analyses, is briefly reviewed.
Two cases are identified, cracks growing in plastically strained materials, such as occurs in high strain fatigue studies and at notch roots, and small cracks growing in single grains as occurs close to the fatigue limit in plain specimens.
Important mechanical and metallurgical features of short cracks are discussed with particular reference to the upper and lower bound definition of a short crack.  相似文献   

4.
Deflection and deviation of cracks commonly occurs because of asymmetry in crack‐tip stresses in both homogeneous materials and functionally graded materials (FGMs); yet the analysis of curved cracks has been limited to simple crack shapes, otherwise the analysis would involve extensive levels of computation. The present study investigates the approximation of curved cracks with simplified shapes. A simple analytical model justifying the use of crack‐shape approximations, developed in an earlier study on stationary curved cracks in homogeneous materials, is outlined. Then, the approach is applied to propagating cracks in both homogeneous and graded material structures. Results are presented from finite element (FE) simulations of crack propagation using exact and simplified crack shapes. The use of an approximated crack shape can provide basic estimates for crack propagation path and critical load. However, systematic divergence can occur between predictions for exact and approximated crack shapes, particularly in inhomogeneous material configurations, and so the development of solutions for non‐straight cracks in FGMs would be expedient.  相似文献   

5.
Abstract— The behaviour of physical short mode I cracks under constant amplitude cyclic loading was investigated both numerically and experimentally. A dynamic two-dimensional elastic-plastic finite element technique was utilised to simulate cyclic crack tip plastic deformation. Different idealisations were investigated. Both stationary and artificially advanced long and short cracks were analysed. A parameter which characterises the plastically deformed crack tip zone, the strain field generated within that zone and the opening and closure of the crack tip were considered. The growth of physically short mode I cracks under constant amplitude fully reversed fatigue loading was investigated experimentally using conventional cast steel EN-9 specimens. Based on a numerical analysis, a crack tip deformation parameter was devised to correlate fatigue crack propagation rates.  相似文献   

6.
The extended FEM is applied to model crack growth near inclusions. A procedure to handle different propagation rates at different crack tips is presented. The examples considered investigate uniform tension as well as equibiaxial tension under plane strain conditions. A parameter study analyzes the effects on the crack path when changing the relative stiffness between inclusion and matrix material, the relative distance between initial crack and inclusion, and the size of the inclusion. Both edge cracks and internal cracks are studied. An example with an internal crack near an inclusion is presented, where both crack tips propagate at different growth rates until one crack tip eventually stops growing, as the related energy release rate drops below the critical value. In another example, only one crack tip propagates initially, but eventually, the energy release rate of the second crack tip becomes critical, and both crack tips propagate. Finally, an example of two cracks near an inclusion is presented in which up to four crack tips propagate simultaneously. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The technique of loading edge cracks by edge impact (LECEI) for generating high rates of crack tip shear (mode-II) loading is presented. The LECEI-technique in combination with a gas gun for accelerating the impactor is used to study the high rate shear failure behaviour of three types of materials. Epoxy resin (Araldite B) shows failure by tensile cracks up to the highest experimentally achievable loading rate; steel (high strength maraging steel X2 NiCoMo 18 9 5) shows a failure mode transition: at low rates failure occurs by tensile cracks, at higher rates, above a certain limit velocity, failure by adiabatic shear bands is observed; aluminum alloy (Al 7075) shows failure due to shear band processes in the high rate regime, but this failure mode is observed over the entire range of lower loading rates, even down to quasi-static conditions. Characteristics of the failure modes are presented. When transitions are observed in the failure process from tensile cracks to shear bands the limit velocity for failure mode transition depends on the bluntness of the starter crack the failure is initiated from: The larger the bluntness of the starter crack the higher the critical limit velocity for failure mode transition. The data indicate that adiabatic shear bands require and absorb more energy for propagation than tensile cracks. Aspects of the energy balance controlling mode-II instability processes in general are considered. Effects very different than for the mode-I instability process are observed: When failure by a tensile crack occurs under mode-II initiation conditions, a notch is formed between the initiated kinked crack and the original starter crack, and, at this notch a compressive stress concentration builds up. The energy for building up this stress concentration field is not available for propagation of the initiated kinked crack. The energy density of a mode-II crack tip stress field, however, when compared to an equivalent mode-I crack tip field, is considerably larger, and, consequently, the remaining driving energy for any mode-II initiated failure process, nevertheless, is higher than for the case of equivalent mode-I initiation conditions. Furthermore, mode-II crack tip plastic zones are considerably larger than equivalent mode-I crack tip plastic zones. Consequently, validity conditions for linear-elastic or small scale yielding failure behaviour are harder to fulfill and possibilities for the activation of nonlinear high energy ductile type failure processes are enhanced. Speculations on how these effects might favour failure by high energy processes in general and by shear bands processes in particular for conditions of high rate shear mode-II loading are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Based on detailed two-dimensional (2-D) and three-dimensional (3-D) finite element (FE) analyses, this paper attempts to quantify in-plane and out-of-plane constraint effects on elastic-plastic J and crack tip stresses for a plate with a through-thickness crack and semi-elliptical surface crack under positive biaxial loading. For the plate with a through-thickness crack, plate thickness and relative crack length are systematically varied, whereas for the plate with a semi-elliptical surface crack, the relative crack depth and aspect ratio of the semi-elliptical crack are systematically varied. It is found that the reference stress based approach for uniaxial loading can be applied to estimate J under biaxial loading, provided that the limit load specific to biaxial loading is used, implying that quantification of the biaxiality effect on the limit load is important. Investigation on the effect of biaxiality on the limit load suggests that for relatively thin plates with small cracks, in particular with semi-elliptical surface cracks, the effect of biaxiality on the limit load can be neglected for positive biaxial loading, and thus elastic-plastic J for a biaxially loaded plate could be estimated, assuming that such plate is subject to uniaxial load. Regarding the effect of biaxiality on crack tip stress triaxiality, it is found that such effect is more pronounced for a thicker plate. For plates with semi-elliptical surface cracks, the crack aspect ratio is found to be more important than the relative crack depth, and the effect of biaxiality on crack tip stress triaxiality is found to be more pronounced near the surface points along the crack front.  相似文献   

9.
10.
The crack propagation behaviour in cast quenched and tempered steel after one overload cycle in tension as well as in compression on short cracks is investigated in deep notched specimens. The overload cycle exhibits a significant influence on the fatigue life endurance, due to the formation of an overload plastic zones in front of the crack tip. The crack propagation after overload cycles is investigated by inspection of the fatigue threshold R-curve and fatigue crack propagation rate. Tension overload increased the long crack threshold and reduced the R-curve effect, whereas overloads in compression reduced the crack growth resistance and shifted the threshold value to larger crack extension. A simple FE simulation was also performed to investigate the variation in the contribution of plasticity induced crack closure during crack propagation after the overload. Macroscopic mechanistic and dislocation models are introduced to explain the results obtained.  相似文献   

11.
Principles of Microstructural Fracture Mechanics (MFM) are used to develop a model for the characterization of environment-assisted short fatigue crack growth. Fatigue cracks are invariably initiated at corrosion pits formed at inclusions, hence the analysis includes stress concentration effects at pits that lead to the propagation of fatigue cracks the rates of which are considered to be proportional to the crack tip plastic displacement. This plasticity is constrained by microstructural barriers which are overcome in a non-aggressive environment at critical crack lengths only when the applied stress is higher than the fatigue limit. However, the superposition of an aggressive environment assists fatigue damage via crack tip dissolution, enhancement of crack tip plastic deformation, the introduction of stress concentrations at pits and a reduction of the strength of the microstructural barrier. These environment effects are manifested in a drastic reduction of the fatigue limit and higher crack propagation rates. The model is compared with fatigue crack propagation data of a BS251A58 steel tested in reversed torsion when submerged in a 0.6M NaCl solution.  相似文献   

12.
Using finite element analysis, metallographic observations and statistical analysis, the stress field ahead of stationary and growing cracks and the ductile-brittle transition mechanism in compact tension (CT) specimens have been evaluated. Compared to a stationary crack, a growing crack elevates the opening stress on the remaining ligament and this may be partially attributed to the re-sharpening of the crack tip after ductile growth. The area of material covered by the high opening stress of the same magnitude also increases with ductile crack growth. In this study, no significant difference for measured cleavage stress can be found for the specimens fractured with and without ductile crack growth. There is a large scatter for the distance between the cleavage initiation site and the stationary or growing crack tip. Cleavage fracture after some amount of ductile crack growth is attributed to the increase of both the opening stress and the area of material under high opening stresses. Finally, the lower bound toughness is predicted using a small data set statistical model in connection with constraint correction. The predicted values give the same trend as the lower bound of the experimental measurements from the lower-shelf to the temperature at which ductile crack growth occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
An investigation is performed as to the extent J and Q calculated for successively stationary crack positions can be used to characterize the state at a growing crack in a corresponding geometry. FE models of single-edge notch bend and double-edge cracked panel specimens are used to cover a variation of constraint levels. The stress and strain fields are compared between different specimens at equal J-values and Q-values, respectively. A remeshing technique is used to enhance the efficiency of the analysis. The commercial FE-code ABAQUS is used and substantial crack growth is achieved with less computer time and better accuracy than in conventional FE analysis.  相似文献   

14.
Hybrid experimental-numerical and experimental analyses were used to explore possible dynamic ductile fracture parameters associated with rapid crack propagation in 7075-T6 and 2024-T3 aluminum alloy, single edge notched (SEN) specimens of 1.6 mm thickness. Dynamic Moiré interferometry was used to record the displacement field, which was used either to drive a dynamic elasto-plastic finite element (FE) model of the fracturing SEN specimen or by itself, to determine the crack-tip J-integral, the $T_\varepsilon ^* $ -integral and the crack tip opening angle (CTOA). The near-field J vanished but the near-field $T_\varepsilon ^* $ reached a constant value with crack propagation. The CTOA associated with a low crack velocity also remained constant during crack propagation but fluctuated at higher crack velocity. The results of this preliminary study suggest that either the $T_\varepsilon ^* $ or the CTOA criteria proposed for stable crack growth could be a suitable parameter for characterizing rapid crack propagation in these thin aluminum specimens.  相似文献   

15.
A procedure for constraint correction of crack growth resistance curves for single edge notched specimens and for pipe geometries is presented. The procedure is based on FE models with the combination of shell- and line-spring finite elements. Crack tip opening displacement and T-stress are employed, and ductile crack growth is accounted for. Experimental crack growth resistance curves are obtained for both single edge notched tension- and bending-specimens for different crack depths to cover significantly different constraint levels. To account for different constraint levels, a method to scale the resistance curve using the T-stress is implemented. The analyses include ductile crack growth in both the circumferential and thickness directions. The effect of circumferential crack growth with biaxial loading is also presented. The results from the line-spring model are compared with detailed 3D-models for verification of the implementation of circumferential crack growth. The importance of including crack growth in circumferential direction is discussed based on numerical parametric studies. A measure to quantify the importance of circumferential crack growth is proposed.  相似文献   

16.
Results on the asymptotic analysis of crack tip fields in elastic-plastic single crystals are presented and some preliminary results of finite element solutions for cracked solids of this type are summarized. In the cases studied, involving plane strain tensile and anti-plane shear cracks in ideally plastic f c c and b c c crystals, analyzed within conventional small displacement gradient assumptions, the asymptotic analyses reveal striking discontinuous fields at the crack tip.For the stationary crack the stress state is found to be locally uniform in each of a family of angular sectors at the crack tip, but to jump discontinuously at sector boundaries, which are also the surfaces of shear discontinuities in the displacement field. For the quasi-statically growing crack the stress state is fully continuous from one near-tip angular sector to the next, but now some of the sectors involve elastic unloading from, and reloading to, a yielded state, and shear discontinuities of the velocity field develop at sector boundaries. In an anti-plane case studied, inclusion of inertial terms for (dynamically) growing cracks restores a discontinuous stress field at the tip which moves through the material as an elastic-plastic shock wave. For high symmetry crack orientations relative to the crystal, the discontinuity surfaces are sometimes coincident with the active crystal slip planes, but as often lie perpendicular to the family of active slip planes so that the discontinuities correspond to a kinking mode of shear.The finite element studies so far attempted, simulating the ideally plastic material model in a small displacement gradient type program, appear to be consistent with the asymptotic analyses. Small scale yielding solutions confirm the expected discontinuities, within limits of mesh resolution, of displacement for a stationary crack and of velocity for quasi-static growth. Further, the discontinuities apparently extend well into the near-tip plastic zone. A finite element formulation suitable for arbitrary deformation has been used to solve for the plane strain tension of a Taylor-hardening crystal panel containing, a center crack with an initially rounded tip. This shows effects due to lattice rotation, which distinguishes the regular versus kinking shear modes of crack tip relaxation. and holds promise for exploring the mechanics of crack opening at the tip.  相似文献   

17.
Fatigue crack propagation tests were performed using specimens with multiple parallel edge notches at regular intervals. Fatigue pre-cracks of uniform length were successfully introduced by eccentric tension-compression loading. Fatigue crack propagation tests were carried out under four-points bending loading. Obtained crack propagation behavior was simulated by using newly developed stress intensity factor equations for multiple parallel edge cracks with alternately different lengths. Simulated results showed a good agreement with the experiment for specimens with relatively broad crack intervals, while for specimens with narrow crack intervals showed a different tendency from the experiment when crack lengths became long.  相似文献   

18.
Softwoods have a repetitive variation in stiffness over their growth rings, which is due to the difference in cellular structure between the latewood and earlywood. In this paper, the influence of the repetitive stiffness variation on radially growing cracks is studied by detailed finite element analyses, in which the wood material is represented by a layered orthotropic continuum. The distribution of stress around the crack is found to be very different from crack tip stress fields in homogenous isotropic materials. The latewood layer ahead of the crack experiences a significant tensile stress, which indicates that formation of new secondary cracks ahead of the primary crack front is a likely mechanism for crack propagation. This mechanism is also favoured by the fact that the primary crack is subjected to a significant shielding from the stiff latewood, which tends to arrest the primary crack in the soft earlywood layer. Analyses are performed for materials with various growth ring widths, and the calculated results are compared with reported experimental observations.  相似文献   

19.
The method of caustics has been applied to investigate crack propagation and interaction between a main propagating edge-crack and a collinear stationary one in plane specimens subjected to impact loading applied in a three-point bending mode. The high sensitivity of the experimental method used, combined with variable collinear crack configurations, has disclosed interesting results, concerning the continuosly variable dynamic stress and strain distributions around the propagating main crack. This arrangement of sensitive cracks was able to verify the existence and relative motion of the neutral zone appearing ahead of the moving crack tip, which separates regions of tensile and compressive transient stress in bent bars.  相似文献   

20.
J. Milios  G. Spathis 《Acta Mechanica》1988,72(3-4):283-295
Summary The optical method of caustics was used along with high speed photography to study crack propagation and crack-hole interaction in plane PMMA specimens containing a transverse edge crack and a hole lying eccentrically to its axis. The specimens were fractured under different dynamic loads.Crack-hole interaction is characterized (for a limiting vertical distance of the crack axis from the center of the hole) by a process of attraction — repulsion of the crack towards the hole, interrupted by a momentary crack-arrest at the hole boundary. Increased values of crack propagation velocity and of the stress intensity factor at the tip of the propagating crack are detected during crack-hole interaction.With 7 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号