首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim T  Udseth HR  Smith RD 《Analytical chemistry》2000,72(20):5014-5019
A heated multicapillary inlet and ion funnel interface was developed to couple an electrospray ionization (ESI) source to a high-vacuum stage for obtaining improved sensitivity in mass spectrometric applications. The inlet was constructed from an array of seven thin-wall stainless steel tubes soldered into a central hole of a cylindrical heating block. An electrodynamic ion funnel was used in the interface region to more effectively capture, focus, and transmit ions from the multicapillary inlet. The interface of seven capillary inlets with the ion funnel showed more than 7 times higher transmission efficiency compared to that of a single capillary inlet with the ion funnel and a 23-fold greater transmission efficiency than could be obtained using the standard orifice-skimmer interface of a triple-quadrupole MS. The multiple-capillary inlet and ion funnel interface showed an overall 10% ion transmission efficiency and approximately 3-4% overall detection efficiency of ions from solution based (i.e., prior to electrospray). The improved performance was achieved under conditions where ESI operation is robust and results in a significant increase in dynamic range.  相似文献   

2.
An improved electrodynamic ion funnel for ion focusing at high pressure (> 1 Torr) has been developed for a triple quadrupole mass spectrometer and its performance compared with that of an earlier prototype previously reported. The ion funnel consists of a series of ring electrodes of progressively smaller internal diameters to which rf and dc electric potentials are co-applied. The new design utilizes ring electrodes possessing larger internal diameters that taper down to a relatively larger exit aperture. In the 1-10 Torr pressure range, the new design provides significant improvement in low m/z ion transmission. Additionally, the overall ion transmission range is improved by linked scanning of the ion funnel's rf voltage concomitantly with the scanning of the quadrupole mass analyzer. Transmission of a noncovalent complex through the interface demonstrated that excessive ion heating was not problematic. Computer simulations of ion transport support the ion funnel design and help explain the relative performance of both designs. Both ion simulations and experimental results are in accord and indicate close to 100% ion transmission efficiency for electrosprayed biopolymer ions through the interface and into the mass analyzer.  相似文献   

3.
The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially because of limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QTOF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and rear IMS-QTOF interfaces. The front funnel is of the novel "hourglass" design that efficiently accumulates ions and pulses them into the IMS drift tube. Even for drift tubes of 2-m length, ion transmission through IMS and on to QTOF is essentially lossless across the range of ion masses relevant to most applications. The rf ion focusing at the IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly charged ions) and is close to the theoretical limit. The overall sensitivity of the present ESI-IMS-MS system is comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultrahigh sensitivity and exceptional throughput.  相似文献   

4.
A new atmospheric pressure ionization mass spectrometer (API-MS) interface has been developed to allow the control of ion transmission through the first vacuum stage of the mass spectrometer. The described interface uses a dual-heated capillary and a dual-inlet ion funnel design. Two electrosprays, aligned with the dual-capillary inlet, are used to introduce ions from different solutions independently into the MS. The initial design was specifically aimed at developing a method for the controlled introduction of calibrant ions in highly accurate mass measurements using Fourier transform ion cyclotron resonance mass spectrometer (FTICR). The dual-channel ion funnel has different inlet diameters that are aligned with the dual capillaries. The large diameter main channel of the ion funnel is used for analyte introduction to provide optimum ion transmission. The second, smaller diameter channel inlet includes a jet disrupter in the ion funnel to modulate the ion transmission through the channel. The two inlet channels converge into a single-channel ion funnel where ions from both channels are mixed, focused, and transmitted to the mass analyzer. Both theoretical simulations and experimental results show that the transmission of different m/z species in the small diameter channel of the ion funnel can be effectively modulated by varying the bias voltage on the jet disrupter. Both static and dynamic modulations of ion transmission are demonstrated experimentally by applying either a constant DC or a square waveform voltage to the jet disrupter. High ion transmission efficiency, similar to the standard single-channel ion funnel, is maintained in the main analyte channel inlet of the ion funnel over a broad m/z range with negligible "cross talk" between the two ion funnel inlet channels. Several possible applications of the new interface (e.g., for high-accuracy MS analysis of complex biological samples) are described.  相似文献   

5.
The alternate operation of nanoelectrospray ionization and atmospheric pressure chemical ionization, using a common atmosphere/vacuum interface and ion path, has been implemented to facilitate ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The ion sources are operated in opposite polarity modes whereby one of the ion sources is used to form analyte ions while the other is used to form reagent ions of opposite polarity. This combination of ion sources is well-suited to implementation of experiments involving multiply charged ions in reaction with singly charged ions of opposite polarity. Three analytically useful ion/ion reaction types are illustrated: the partial deprotonation of a multiply protonated protein, the partial protonation of a multiply deprotonated oligonucleotide, and electron transfer to a multiply protonated peptide. The approach described herein is attractive in that it enables both single proton-transfer and single electron-transfer ion/ion reaction experiments to be implemented without requiring major modifications to the tandem mass spectrometer hardware. Furthermore, a wide range of reactant ions can be formed with these ionization methods and the pulsed nature of operation appears to lead to no significant compromise in the performance of either ion source.  相似文献   

6.
Electrodynamic ion funnel interfaces for electrospray ionization (ESI) have shown to enhance the sensitivity of measurements by more than 2 orders of magnitude in the intermediate pressure region of the instrument (1-30 Torr). In this study, we use an ion funnel at ambient pressure to enhance the sensitivity of extractive electrospray ionization (EESI) by spraying directly into the ion funnel. EESI is a powerful ionization technique that is capable of handling complex matrixes that may contain dozens of compounds. Our results using atenolol, salbutamol, and cocaine as test compounds show that we can improve the limit of detection for these compounds by more than 3 orders of magnitude compared to standard EESI experiments.  相似文献   

7.
We designed a simple and efficient inlet system to act as an interface between samples at atmospheric pressure and the high vacuum inside a mass spectrometer. The newly designed stainless steel orifice leak sample inlet system is simple and rugged and fulfills all the basic requirements. With this inlet system coupled with a lithium ion attachment mass spectrometer, it is possible to detect any chemical species at atmospheric pressure, including radical intermediates, on a real-time basis. For illustrative purposes, the sampling efficiency of the inlet probe coupled with a lithium ion attachment mass spectrometer is discussed for laboratory air and polyethylene pyrolysis.  相似文献   

8.
Tang X  Bruce JE  Hill HH 《Analytical chemistry》2006,78(22):7751-7760
Reduced flow rate electrospray ionization has been proven to provide improved sensitivity, less background noise, and improved limits of detections for ESI-MS analysis. Miniaturizing the ESI source from conventional electrospray to microelectrospray and further down to nanoelectrospray has resulted in higher and higher sensitivity; however, when effects of flow rate were investigated for atmospheric pressure ESI-IMS using a nanospray emitter, a striking opposite result was observed. The general tendency we observed in ESI-IMS was that higher flow rate offered higher ion signal intensity throughout a variety of conditions investigated. Thus, further efforts were undertaken to rationalize these contradictory results. It is well accepted that decreased flow rate increases both ionization efficiency and transmission efficiency, thus improving ion signal in ESI-MS. However, our study revealed that decreased flow rate results in decreased ion signal because ion transfer is constant, no matter how flow rate changes in ESI-IMS. Since ion transfer is constant in atmospheric pressure ESI-IMS, ionization efficiency can be studied independently, which otherwise is not possible in ESI-MS in which both ionization efficiency and transmission efficiency vary as conditions alter. In this article, we present a systematic study of signal intensity and ionization efficiency at various experimental conditions using ESI-IMS and demonstrate the ionization efficiency as a function of flow rate, analyte concentration, and solvent composition.  相似文献   

9.
A rapid synthesis of niobium oxide nanowires using an oxygen atmospheric pressure plasma jet sustained by repetitive DC pulse power is presented. Using this plasma jet to treat niobium foils, niobium oxide nanowires (NWs) with the length up to 3-6 μm and the diameter of 100-200 nm can be fabricated within 20 s. Parametric studies show that a high growth rate can be obtained with the synergetic effect of the temperature and the reactivity of the plasma jet. The structural analysis of the jet treated niobium foil shows that in the case that no NW is formed, the major phases are Nb6O and orthorhombic Nb2O5 while with the presence of NWs, high crystalline monoclinic Nb2O5 is the dominant phase.  相似文献   

10.
A nanoelectrospray ionization mass spectrometry (ESI-MS) source and interface has been designed that enables efficient ion production and transmission in a 30 Torr pressure environment using solvents compatible with typical reversed-phase liquid chromatography (RPLC) separations. In this design, the electrospray emitter is located inside the mass spectrometer in the same region as an electrodynamic ion funnel. This avoids the use of a conductance limiting ion inlet, as required by a conventional atmospheric pressure ESI source, and allows more efficient ion transmission to the mass analyzer. The new subambient pressure ionization with nanoelectrospray (SPIN) source improves instrument sensitivity and enables new electrospray interface designs, including the use of multi-emitter approaches. Performance of the SPIN source was evaluated by electrospraying standard solutions at 300 nL/min and comparing results with those obtained from a standard atmospheric pressure ESI source that used a heated capillary inlet. This initial study demonstrated an approximately 5-fold improvement in sensitivity when the SPIN source was used compared to a standard atmospheric pressure ESI source. The importance of desolvation was also investigated by electrospraying at different flow rates, which showed that the ion funnel provided an effective desolvation region to aid the creation of gas-phase analyte ions.  相似文献   

11.
A rectilinear ion trap (RIT) mass analyzer was incorporated into a mass spectrometer fitted with an electrospray ionization source and an atmospheric pressure interface. The RIT mass spectrometer, which was assembled in two different configurations, was used for the study of biological compounds, for which performance data are given. A variety of techniques, including the use of a balanced rf, elevated background gas pressure, automatic gain control, and resonance ejection waveforms with dynamically adjusted amplitude, were applied to enhance performance. The capabilities of the instrument were characterized using proteins, peptides, and pharmaceutical drugs. Unit resolution and an accuracy of better than m/z 0.2 was achieved for mass-to-charge (m/z) ratios up to 2000 Th at a scan rate of approximately 3000 amu/(charge.s) while reduced scan rates gave greater resolution and peak widths of less than m/z 0.5 over the same range. The mass discrimination in trapping externally generated ions was characterized over the range m/z 190-2000 and an optimized low mass cutoff value of m/z 120-140 was found to give equal trapping efficiencies over the entire range. The radial detection efficiency was measured as a function of m/z ratio and found to rise from 35% at low m/z values to more than 90% for ions of m/z 1800. The way in which the ion trapping capacity depends on the dc trapping potential was investigated by measuring the mass shift due to space charge effects, and it was shown that low trapping potentials minimize space charge effects by increasing the useful volume of the device. The collision-induced dissociation (CID) capabilities of the RIT instrument were evaluated by measuring isolation efficiency as a function of mass resolution as well as measuring peptide CID efficiencies. Overall CID efficiencies of more than 60% were easily reached, while isolation of an ion with unit resolution at m/z 524 was achieved with high rejection (>95%) of the adjacent ions. The overall analytical capabilities of the ESI-RIT instrument were demonstrated with the analysis of a mixture of pharmaceutical compounds using multiple-stage mass spectrometry.  相似文献   

12.
TiO2 nanoparticles were synthesized by a facile method of dielectric barrier discharge jet (DBD jet) for the dye-sensitized solar cell (DSSC) and other potential applications. DBD jet is utilized as a method for deposition of TiO2 nanoparticles with a 9 μm/min growth rate which is more than ×25 faster than reported previously. Their performance was compared with cells fabricated using commercial TiO2 nanoparticles (P25). The crystallinity and chemical bonding states of samples were characterized by XRD and XPS. Photoanodes fabricated by the DBD jet method resulted in approximately 50% higher photoconversion efficiency than ones prepared from P25 nanoparticles.  相似文献   

13.
The growth of multi-walled carbon nanotube (MWCNT) forests was investigated using an atmospheric pressure plasma jet (APPJ) system with a mixture of helium and acetylene gases. The MWCNT forests grown on Fe catalyst were compared with those grown on Ni. The growth of MWCNT forests using Fe as the catalyst was better than the growth of MWCNT forests using Ni. The MWCNT forests grown using Fe catalyst and with a plasma power of 30 W were about 17 ± 9% taller than for the plasma off. We were unable to grow MWCNTs using Ni catalyst with the plasma power off; but curly MWCNTs were grown using Ni catalyst if the plasma power was 30 W. It is found that MWCNT growth is enhanced using an APPJ. The height of the forests produced using this APPJ system was also better than that reported by other researchers using either CVD or PECVD systems.  相似文献   

14.
We demonstrate the facile and efficient surface functionalization of vertically-aligned carbon nanotube (VCNT) arrays using an atmospheric pressure plasma jet (APPJ) system. The VCNT arrays were synthesized on Fe-deposited SiO2 wafers using an acetylene carbon source by thermal chemical vapor deposition method. To functionalize the surface of the VCNT arrays, the APPJ system was ignited using nitrogen gas at high voltage of 15 kV and frequency of 25 kHz. We varied the treatment time of the APPJ and the inter-distance between plasma jet and top surface of the VCNT in order to systematically investigate the optimal conditions of the APPJ system. The hydrophobic nature of the as-grown VCNT arrays was drastically changed to hydrophilic character via the facile APPJ treatment. X-ray photoelectron spectroscopy confirmed the formation of hydrophilic functional groups such as hydroxyl and carboxyl groups, and nitrogen-doping-related functionalities such as amines, in addition to pyrrolic- and pyridinic-bonding. The results prove that the APPJ treatment is a facile and efficient method for the surface modification of nanomaterials.  相似文献   

15.
Local deposition of SiOx was studied using an atmospheric pressure very-high-frequency (VHF) inductive coupling microplasma jet (AP-MPJ) from a tetraethoxysilane ((Si(OC2H5)4), TEOS) and oxygen mixture. The SiOx obtained showed the dielectric constant of 3.8 with a low leakage current of the order of ∼ 10− 6 A ·cm− 2 up to 8 MV ·cm− 1. Bottom-gated sputtered-ZnO thin-film transistors with a AP-MPJ SiOx as a gated dielectric layer exhibited a relatively high field-effect mobility of 24 cm2 V− 1 s− 1, a threshold voltage of 14 V and an on/off current ratio of ∼ 104, a performance comparable to that of thermal silicon dioxide. The TFT performance was also obtained for the top-gated ZnO-TFTs with a field-effect mobility of 1.4 cm2 ·V− 1 s− 1, a threshold voltage of − 1.9 V, and an on/off current ratio of ∼ 103.  相似文献   

16.
The analytical performance of an atmospheric pressure sampling, multiple-channel, high-throughput mass spectrometer was investigated using samples of a variety of types. The instrument, based on an array of cylindrical ion traps, was built with four independent channels and here is operated using two fully multiplexed channels (sources, ion optics, ion traps, detectors) capable of analyzing different samples simultaneously. Both channels of the instrument were incorporated within the same vacuum system and operated using a common set of control electronics. A multichannel electrospray ionization source was assembled and used to introduce samples including solutions of organic compounds, peptides, and proteins simultaneously into the instrument in a high-throughput fashion. Cross-talk between the channels of the instrument occurred in the detection system and could be minimized to 1-2% using shielding between detector channels. In this initial implementation of the instrumentation, an upper mass/charge limit of approximately 1300 Th was observed (+13 charge state of myoglobin) and unit mass/charge resolution was achieved to approximately 800 Th. The rather limited dynamic range (2-3 orders of magnitude for low-concentration analytes) is due to cross-talk contributions from more concentrated species introduced into a different channel. Analysis of mixtures of alkylamines and peptides is demonstrated, but analysis of mixtures with a wide spread in mass/charge ratios was not possible due to mass discrimination in the ion optics. Further refinement of the vacuum system and ion optics will allow the addition of more channels of parallel mass analysis and facilitate applications in fields such as proteomics and metabolomics.  相似文献   

17.
Infrared atmospheric pressure matrix-assisted laser desorption/ionization on an ion trap mass spectrometer is used to analyze frozen samples generated using a Peltier-cooled sample stage. This allows for the analysis of samples in water without the addition of matrix, in near-native conditions, and with minimal loss of water due to evaporation. Analysis of frozen samples is extended to study peptides, carbohydrates, and glycolipids.  相似文献   

18.
A switched-capacitor interface for capacitive pressure sensors   总被引:3,自引:0,他引:3  
A switched-capacitor interface for a capacitive pressure sensor is developed which provides a linear digital output. It consists basically of a sample/hold circuit followed by a charge-balancing analog-to-digital converter. The sensor capacitance changes hyperbolically with an applied pressure. To convert the nonlinear capacitance change into the linear digital output, two linearization methods are investigated. In either method, a linear digital output with an accuracy higher than 8-b is obtained. Because of its high-accuracy capability and compatible fabrication process, the interface described is best suited for a smart silicon capacitive pressure sensor  相似文献   

19.
Infrared atmospheric pressure matrix-assisted laser desorption/ionization on an ion trap mass spectrometer is used to study sialylated oligosaccharides desorbed from the liquid phase. Glycerol doped with various cations provides the opportunity to produce cation-adducted intact molecular ions of sugars. Distinct combinations of cations allow for sialic acid stabilization, as well as differential cleavage, resulting in more complete fragmentation coverage of the oligosaccharide. Alkali and transition metal cations are utilized to create three distinct molecular ion species, involving the adduction of a singly charged cation, two singly charged cations, or a doubly charged cation. From these different molecular ion types, complementary sequence, branching, and linkage information for sialylated oligosaccharides can be deduced.  相似文献   

20.
Mesoporous silica material, SBA-15, is an excellent support for constructing fluorescent surface sensor. In this paper, we reported a three-step surface reaction involved strategy to construct efficient fluorescent surface sensor for mercury ion by clicking rhodamine fluoroionophores onto APES-functionalized SBA-15, which is fully characterized by IR spectra, TGA analysis, elemental analysis, nitrogen adsorption experiment and TEM. Our experimental results indicated that such a strategy exhibits an obviously higher loading efficiency within SBA-15 than a previously reported strategy. The Hg2+ extracting efficiency for SBAIR was found to be enhanced (ca. 89%). In addition to the high selectivity, the current chemosensor shows improved sensitivity and can respond to Hg2+ as low as ppb level (1.0 × 10−8 M, 2 ppb) in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号