首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对等效锥度对车辆的影响规律问题,长期跟踪测试某型号高速动车组,获得了不同里程下的车轮踏面廓形,匹配车轮与标准钢轨、磨耗钢轨,计算出不同形式的等效锥度曲线,搭建动力学仿真模型,利用实测数据研究等效锥度对车辆蛇行运动的影响.研究表明:车轮在行驶一段时间后会出现不同程度的凹磨现象,与磨耗钢轨匹配后的等效锥度呈现较大的负斜率,会大幅降低临界速度,导致构架横向加速度增大出现二次蛇行运动,蛇行频率出现不同的变化规律.  相似文献   

2.
半主动悬挂高速列车稳定性研究   总被引:2,自引:0,他引:2  
运用非线性分叉理论,对半主动高速列车的蛇行运动稳定性开展了全面研究。建立高速列车模型、半主动减振器模型、半主动控制器模型,并在此基础上构建半主动高速列车联合仿真模型系统。详细分析高速列车动力学系统中影响稳定性的主要非线性特征:轮轨接触几何非线性和抗蛇行减振器非线性。利用演算法计算不同非线性特征组合下的高速列车在采用被动悬挂和采用半主动悬挂系统时的蛇行运动分叉特征,并与线路试验进行对比。结果显示,半主动悬挂系统对采用阻尼型抗蛇行减振器并匹配以大锥度踏面的车辆的稳定性影响不大。半主动悬挂会使采用摩擦型抗蛇行减振器匹配以小锥度踏面的车辆的稳定性有所降低但不影响正常使用。半主动悬挂会使采用摩擦型抗蛇行减振器匹配以磨耗状态的小锥度踏面的稳定性显著下降。因此在高速列车设计中应根据车辆悬挂系统特点,谨慎选用半主动悬挂,在服役过程中亦应关注轮轨关系的变化对半主动悬挂车辆稳定性的影响。  相似文献   

3.
为了提高车辆动力学计算机仿真精度,研究抗蛇行减振器力学模型及其对车辆动力学性能的影响,基于可压缩流体的压力?流量特性建立了我国某高速动车组抗蛇行减振器非线性力学模型,并对其进行了试验和动力学仿真分析。结果表明:相比传统分段线性模型,抗蛇行减振器非线性力学模型能够同时体现黏性阻尼力和油液被压缩而产生的回复力,仿真计算结果与试验结果吻合良好;基于抗蛇行减振器非线性力学模型计算的临界速度会随踏面等效锥度的增加而先增大后减小,计算的横向平稳性指标较高,且随速度增加而增加的趋势更显著。研究表明,抗蛇行减振器非线性力学模型能够有效提高动力学仿真精度,对车辆的蛇行运动稳定性和横向平稳性有较大影响,但对垂向平稳性和曲线通过安全性的影响较小。  相似文献   

4.
为对比不同线路、相同平台动车组车轮磨耗演变规律及其对动车组动力学性能的影响,对速度等级250 km/h的A、B两条高速线路上运行的同平台动车组车轮磨耗进行长期跟踪测试。将实测车轮踏面与实测钢轨廓形匹配,对比分析车轮磨耗对等效锥度、接触点分布等轮轨接触几何关系的影响。利用多体动力学软件建立动车组拖车动力学仿真模型,研究车轮磨耗演变规律对动车组动力学性能及轮轨滚动接触疲劳损伤的影响。研究结果表明,A线路车轮平均磨耗速率为0.05 mm/万km,踏面磨耗分布在-20~30 mm范围内,呈现凹形磨耗;等效锥度增大速率约为0.006/万km;轮轨接触点逐渐向钢轨轨肩处靠拢,存在明显跳跃现象。B线路车轮平均磨耗速率约为0.025 mm/万km,踏面磨耗分布在-35~50 mm范围内,磨耗分布较均匀;等效锥度稳定在0.03左右,随运营里程的增大没有明显的变化趋势,轮对横移量在10mm以内的轮轨接触点始终保持车轮踏面中部与钢轨轨顶中部接触,轮轨接触点分布均匀。随着运行里程的逐渐增大,A线路的动力学性能略有下降,B线路的动力学性能基本稳定。B线路的车轮表面疲劳指数小于A线路,车轮发生滚动接触疲劳裂纹的可...  相似文献   

5.
为得到油压减振器特性参数对高速动车组临界速度和轮轨磨耗的影响,以CRH380B型动车组为实例,基于车辆动力学理论,采用动力学仿真软件SIMPACK建立动力学模型,对二系横向减振器、抗蛇行减振器的橡胶节点刚度和阻尼特性进行研究。结果表明:抗蛇行减振器橡胶节点刚度最优值在10~12 MN/m范围内,当节点刚度小于此范围时,临界速度显著下降,轮轨磨耗功率缓慢增加;节点刚度大于此范围时,临界速度缓慢下降,但磨耗功率急剧增加。二系横向减振器橡胶节点刚度对临界速度和轮轨磨耗的影响较小,其最优取值为4.25 MN/m。抗蛇行减振器和二系横向减振器阻尼特性对临界速度和轮轨磨耗均有一定影响。  相似文献   

6.
介绍了抗蛇行减振器的简化模型——Maxwell模型。基于蛇形运动的稳定性理论,推导了带抗蛇行减振器的刚性转向架的线性临界速度解析表达式。利用表达式研究了不同等效锥度下抗蛇行减振器串联刚度和结构阻尼对临界速度的影响。研究结果表明:在相同锥度下,结构阻尼和串联刚度存在最佳匹配关系,小结构阻尼应配合小串联刚度,较大结构阻尼应配合较大串联刚度,大结构阻尼应配合大串联刚度;在满足结构阻尼和串联刚度匹配的大范围下,不同等效锥度应匹配不同的串联刚度和结构阻尼,小锥度应匹配较小的串联刚度和较大的结构阻尼,大锥度应匹配较大的串联刚度和较小的结构阻尼。  相似文献   

7.
利用流体建模仿真软件AMESim和多体动力学分析软件SIMPACK分别建立抗蛇行减振器和高速车辆的仿真模型,通过联合仿真比较抗蛇行减振器阻尼分别采用F—v实时特性曲线和等效线性阻尼时车辆的动力学性能,并对比分析车辆在抗蛇行减振器失效、车轮磨耗后车辆的运动稳定性。计算结果表明:采用F—v实时特性曲线时车辆的临界速度高于采用等效线性阻尼的临界速度,且运行平稳性也更好,但二者对车辆的曲线通过安全性的影响不大;减振器失效时,车辆的蛇行运动失稳临界速度显著降低。  相似文献   

8.
动车组车体异常振动问题分析及治理研究   总被引:1,自引:1,他引:0  
对某型高速动车组车辆进行长期跟踪测试,发现当车轮镟修后车辆运行18万km以上时,车体异常抖振现象时有发生,且抖振时,车体横向及垂向振动在10 Hz频率附近均出现异常放大现象.结合车轮踏面测试分析、车体和构架振动测试分析以及车体试验模态分析,对车体异常抖振机理进行研究.结果表明,当车轮镟修后车辆运行18万km以上时,车轮等效锥度增加至0.501以上,且车轮踏面出现凹磨,轮轨接触位置较分散,存在跳跃现象;当车辆运行过程中受到较大的线路横向激扰时,车轮产生较大横移量,轮轨接触位置发生突变,并导致转向架蛇行运动频率陡升至与车体菱形模态频率接近而引发二者同步运动,致使菱形模态振动放大,是车体发生异常抖振的原因.为治理该问题,以提高车辆运行稳定性及运行平稳性为目标,提出基于正交试验的多目标车辆系统悬挂参数优化方法,对一系横向、纵向定位刚度和抗蛇行减振器节点刚度及阻尼系数进行同步优化,仿真计算结果表明,悬挂参数优化后,车辆在不同踏面磨耗状态下的临界速度、运行安全性及运行平稳性均得到明显提高.对悬挂参数优化方案进行在线试验验证,结果表明,采用优化的悬挂参数后,车体抖振处能量明显下降,抖振问题得到明显改善.  相似文献   

9.
针对某型动车组运营过程中出现的转向架蛇行失稳报警和车体低频晃动等问题,结合S1002CN型车轮踏面与实测钢轨打磨前和打磨后轨面的轮轨接触特征,将车轮踏面接触区分为踏面喉根圆接触区、常工作区和踏面端部接触区三部分,并对其外形进行改进设计(称为LMB_10型车轮踏面)。改进的LMB_10型车轮踏面保持工作区的轮轨接触关系,减小轮缘厚度并平缓轮缘根部,降低了由于高等效锥度带来的转向架蛇行失稳报警风险;同时增大踏面端部斜率,降低了由于低等效锥度带来的车体低频晃动风险。仿真分析和线路试验结果表明,改进的LMB_10型车轮踏面与标准CH60型轨面匹配的等效锥度降低至0.105,增大了轮轨间隙,与打磨前后轨面匹配适应性增强,改善了车辆的蛇行运动稳定性、运行平稳性和曲线通过性能。在线路运营考核中,改进的LMB_10型车轮踏面镟轮周期最长达39万公里,在整个运行过程中始终具有良好的动力学性能。  相似文献   

10.
根据转向架9自由度蛇行运动模型,通过车辆运动稳定性分析,利用赫尔维茨稳定判据,建立基于运动稳定性的抗蛇行减振器阻尼系数解析计算数学模型;根据车辆通过曲线轨道时车辆脱轨安全性的要求,建立基于曲线通过性的抗蛇行减振器阻尼系数解析计算数学模型;在此基础上,利用黄金分割法,建立基于运动稳定性和曲线通过性折中最优的抗蛇行减振器阻尼系数解析设计方法,并对其主要影响因素进行分析。通过某高速客车抗蛇行减振器最优阻尼系数的设计实例、仿真分析及可靠性验证,可知所设计抗蛇行减振器阻尼能够使车辆具有良好的运动稳定性和曲线通过性能,结果表明,所建立的高速客车抗蛇行减振器的阻尼匹配设计原理和方法是正确的。  相似文献   

11.
为了研究车轮异常磨耗对车辆动力学性能影响的规律,本文对某CRH1型动车组进行了持续跟踪测试,得出了车轮外形及磨耗数据,并分析了其轮缘、踏面厚度、等效锥度与车体振动加速度等主要参数。结果表明:各车轮均存在明显的轮缘偏磨现象,且磨耗速度与运行里程成正增长趋势,车轮偏磨直接影响了车辆的横向稳定性。  相似文献   

12.
为改善轨道非平稳随机不平顺对列车动力学性能的影响,基于高速列车线路运行的重复性以及周期性,采用变步长迭代寻优控制算法,建立高速列车抗蛇行减振器半主动变阻尼控制系统,以转向架横向加速度峰值为目标函数,不断迭代寻找最有利于列车动力学性能的减振器阻尼值,改善了传统列车定阻尼值的弊端。多体动力学软件和控制系统仿真软件相结合联合仿真,仿真分析表明,轨道非平稳随机不平顺会使得车体和构架横向加速度、轮对横向力以及轮轨磨耗以倍数增加,严重影响列车动力学性能;通过变阻尼控制之后,构架横向加速度、轮对横向力以及轮对磨耗明显减小,车体横向加速度也略有减小,能够改善列车动力学性能,提高列车运行安全性与平稳性。  相似文献   

13.
系统分析总结我国高速铁路轮轨断面横向磨耗情况、特征、形成机理、对车辆动态行为的影响以及对策研究。高速车轮踏面横向磨耗以在名义滚动圆处形成凹坑磨耗和轮缘磨耗为主,主要发生在相对高的等效锥度和具有较厚轮缘的轮对上。车轮踏面横向凹坑磨耗与高速轨道高平直度和高速列车高运行平稳性密切相关。轮轨平稳地高速滚动接触,导致轮轨接触光带狭窄平直,且主要集中在名义滚动圆附近,此处车轮踏面材料磨耗累积迅速形成凹坑,轮对的等效锥度迅速增大。凹坑磨耗在一定深度范围内,将会引起轮对横向晃动,影响车辆的舒适性。提出7个方面的措施,来抑制或减缓车轮踏面凹坑磨耗。最后讨论了钢轨断面横向磨耗情况,主要反映在小半径曲线处外轨内侧磨耗,原因类似普通线路小半径曲线钢轨侧磨情况,也是车轮轮缘磨耗的主要原因,简单讨论减缓措施。所做的工作将对我国高速铁路轮轨型面和硬度匹配深入研究提供重要的参考依据。  相似文献   

14.
邵俊捷  雷蕾  胡泽耀 《机械强度》2022,44(2):468-473
抗蛇行减振器是高速列车悬挂系统中的关键零部件.通过抗蛇行减振器的实测性能退化数据和抗蛇行减振器的设定阻尼值,获取到不同性能状态的抗蛇行减振器性能数据.根据我国某型主力高速列车的动力学参数,建立车辆的动力学模型,结合不同性能状态的抗蛇行减振器性能数据,分析其对车辆动力学性能的影响.结果表明:在实际运行时,抗蛇行减振器的性...  相似文献   

15.
对于动车组车轮磨耗引起的动力学性能降低问题,车轮型面优化是一个很好的解决方案。采用旋转压缩微调法(Rotary-scaling fine-tuning method,RSFT)进行型面生成;建立某型动车组车辆动力学模型,采用该模型计算相应的优化目标和约束条件;利用径向基神经网络-粒子群(Radial-based neural network-particle swarm optimization,RBF-PSO)算法优化出最优廓形。通过对比优化前后车轮型面的动力学性能和磨耗性能,可以发现:优化后车轮型面临界速度为424.6 km/h,增大10.2%;横向平稳性和垂向平稳性指标整体减小,同时提高了曲线通过时的安全性指标,脱轨系数、倾覆系数和轮轴横向力都进一步减小。优化后车轮型面接触点分布相对更加均匀,等效锥度减小。同时优化后车轮型面有效减小车轮磨耗深度,并减小了轮缘根部磨耗,车轮最大磨耗深度减小9.8%。  相似文献   

16.
为了研究踏面凹形磨耗车轮的动力学行为,改进Kik-Piotrowski方法提出一种可考虑轮对摇头和轮轨多点接触的非Hertz接触模型,结合车辆—轨道耦合动力学理论计算具有实测踏面凹形磨耗车轮的CRH2高速动车组在钢轨上运行时的轮轨动态相互作用行为。计算结果表明,改进的Kik-Piotrowski方法可以很好地模拟磨耗车轮与钢轨的多点接触和非Hertz接触行为,轮轨法向力、轮轨蠕滑力以及接触斑形状都与CONTACT计算结果比较接近。对于踏面凹形磨耗的车轮,接触区域分布在车轮磨耗边缘的两个孤立位置,当接触斑从一个区域向另一区域转换时存在瞬时的两点接触。由于两点接触的过渡,接触区域在两个位置转换时造成的冲击效应并不明显。与无磨耗车轮的动力学响应对比,该类车轮踏面凹形磨耗对轮轨力的影响从总体上来说不大,对轮轨横向力的影响略大于对轮轨垂向力的影响,磨耗会增加轮轨垂向力和轮轨横向力的高频成分。  相似文献   

17.
为提升高速列车的线路运行适应性,设计基于抗蛇行减振器的模型预测控制(MPC)方法,实现基于减振器阻尼值实时调节的车辆蛇行运动稳定性控制。建立考虑线性轮轨接触关系的整车横向7自由度简化动力学模型;减振器考虑为理想Maxwell模型,但阻尼系数实时可调;基于模型预测控制理论设计主动抗蛇行减振器,建立目标函数及约束条件,求解最优阻尼系数;仿真分析主动控制条件的蛇行运动稳定性和运行平稳性以及目标函数对控制效果的影响。结果表明:与被动悬挂相比,采用MPC主动抗蛇行减振器能够有效抑制车辆的蛇行运动,使车辆的临界速度提升30%以上。  相似文献   

18.
基于多体动力学理论及某型动车组的拓扑结构关系,利用SIMPACK建立了17体、50自由度的某型动车组单节车模型,仿真分析了一系垂向减振器阻尼、二系垂向减振器阻尼和抗蛇行减振器失效对其运行平稳性的影响。研究结果表明,随着一系垂向减振器阻尼的增大,其垂向平稳性逐渐变好,达到最优值后再逐渐变差,即优化一系垂向阻尼可以改善运行平稳性;随着二系垂向减振器阻尼的增大,其垂向平稳性变差,二系垂向阻尼显著影响运行平稳性。为了使单节车运行舒适性指标达到2级,在3个抗蛇行减振器失效工况下动车组可以在200km/h速度范围内平稳运行,在2个抗蛇行减振器失效工况下动车组可以在250 km/h速度范围内平稳运行。  相似文献   

19.
传统的高速列车半主动控制的控制对象是列车车体振动,往往没有考虑列车轮对的振动。轮对振动影响列车脱轨系数和轮对磨耗,关系到列车安全性和经济性。为了改善列车轮轨动力学性能,对一系横向减振器进行建模与仿真研究,通过设定不同的一系横向阻尼值,分析一系横向减振器对列车动力学性能的影响规律,并将天棚阻尼控制算法应用在一系横向半主动控制上,与被动悬挂情况进行对比。仿真结果表明,在350km/h速度级下,采用一系横向半主动控制比无一系横向减振器,列车的平稳性指标、脱轨系数和轮轨磨耗均得到改善,整体动力学性能得到提高。  相似文献   

20.
车轮踏面磨耗引起轮轨匹配不良,极易造成车辆异常振动。设计车轮镟修型面,改善轮对及车辆振动特性。以圆弧长度、半径、及圆弧坐标为变量,采用GA-BP算法,以车辆运行平稳性与等效锥度为优化目标构建踏面优化模型,进行多目标寻优求解,获得磨耗车轮的镟修型面。结合车辆系统动力学进行分析,结果表明:镟修型面LMB-opti的轮轨静态匹配良好,车轮踏面接触点分布均匀,构架横向振动加速度在(-0.45g,0.45g)之间,车辆运行平稳性指数为2.2,降低了23.3%;列车运行5万km、10万km后,镟修型面LMB-opti比标准型面LMB磨耗深度分别降低了4.7%和5.1%,有利于减缓车轮凹磨及改善车辆的异常振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号