首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ultrafine grained duplex steels were fabricated by austenite reverted transformation annealing of the medium manganese steels after quenching or cold rolling. The microstructures were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The mechanical properties were determined by uniaxial tensile test. It was demonstrated that both the quenched and cold rolled structures were transformed into ultrafine grained duplex structures with large fractioned austenite by ART‐annealing. Long time annealing is essential to obtain the large fractioned austenite in quenched steel, but only short time annealing is needed to get large fractioned austenite in the cold rolled sheet. The mechanical examinations indicated that ART‐annealing results in the superhigh tensile elongation (>40%) and superhigh strength (1000 MPa) in quenched steels after long time annealing but in cold rolled steels after short time annealing. Based on the analysis on the work hardening behaviors of these ART‐annealed steels, the abnormal work hardening rate was presented and analyzed. The substantially enhanced ductility was attributed to the Lüders band propagation of the ferrite matrix and/or the TRIP effects of the large fractioned austenite. At last the dynamic phase natures of both fraction and stress was proposed to interpret the abnormal hardening behaviors and the “S” shaped stress–strain curves.  相似文献   

2.
3.
Ultrafine grained (UFG) steels with bimodal grained microstructure consisting of ultrafine grains in the size of 400 nm and micrometer‐sized grains were obtained by repetitive thermo‐mechanical processing. The microstructure evolution and mechanical properties were studied. It was revealed that the formation of the bimodal grained microstructure is attributed to the combination of continuous and discontinuous recrystallization. Compared with the uniform UFG steel with average grain size of about 400 nm, the ductility was remarkably improved by introducing micrometer‐sized grains into the UFG microstructure, providing better strength‐ductility balance.  相似文献   

4.
研究了锰含量对两种超细晶粒C-Mn钢(碳含量为0.2%)显微组织和机械性能的影响.大压下量温变形和连续退火可形成超细晶粒显微组织,最终钢的显微组织由含有细小渗碳体颗粒的超细粒状铁素体组成.渗碳体颗粒内锰富集,因此,铁素体晶粒的平均尺寸随锰含量的增加而减小(锰含量从0.74%增加到1.52%时,晶粒尺寸由1.3μm减小到0.8μm).锰含量越高,晶粒越细.延展性和韧性相同的情况下,增加锰含量将提高钢的强度.  相似文献   

5.
6.
A duplex ultrafine microstructure in a medium manganese steel(0.2C-5Mn)was produced by austenite reverted transformation annealing(ART-annealing).The microstructural evolution during annealing was examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).Based on the microstructure examination,it was found that some M3 C type carbides appeared in the martensitic matrix at the beginning of the ART-annealing.But with further increasing annealing time,these carbides would be dissolved and finally disappeared.Meanwhile,the austenite lath was developed in the ART-annealing process and the volume fraction of austenite increased with the increase of the annealing time,which resulted in a duplex microstructure consisting of ultrafine-grained ferrite and large fraction of reverted austenite after long time annealing.The mechanical property examinations by uniaxial tensile tests showed that ART-annealing(6h,650 ℃)resulted in a superhigh product of strength to elongation up to 42GPa·%.  相似文献   

7.
利用扫描电镜、透射电镜、背散射电镜及拉伸和冲击试验研究了锰对含锰量为3%~12%的Fe-Mn合金组织和力学性能的影响。结果表明,当锰含量介于3%~9%时,随着锰含量的上升,高温相变产物(多边形铁素体和准多边形铁素体)受到抑制,合金的屈服强度和抗拉强度逐渐增加而均匀延伸率和总延伸率逐渐下降;当锰含量增加至12%时,合金中残留的少量亚稳ε马氏体和奥氏体在形变初期发生相变,产生的相变塑性使合金呈现出屈服强度下降的假象,但合金的抗拉强度、均匀延伸率和总延伸率均上升。由于晶界锰原子浓度的增加会减弱界面的结合力,故合金的冲击韧性随锰含量的增加而显著下降。为使Fe-Mn合金获得较好的综合力学性能,应控制锰含量小于7%或在基体中引入适量的亚稳相。  相似文献   

8.
利用Gleeble 1500热模拟机测定了簿板坯连铸连轧EAF-CSP工艺生产的低碳含锰钢经奥氏体区二次变形后的CCT曲线.实验钢含有0.17%C,1.21%Mn和0.28%Si(质量分数).研究表明:提高热轧后的冷却速度使Ar_3温度降低,导致试验钢的晶粒进一步细化;冷速大于20℃/s时,出现贝氏体和铁素体的混合组织,可降低钢的屈强比;790℃终轧,550℃卷曲时出现铁素体/珠光体带状组织,提高冷速使溶质(如Mn和C)富集区在形成珠光体之前完成奥氏体—铁素体相变是避免生成铁素体/珠光体带状组织的有效方法.  相似文献   

9.
High temperature carburization is becoming more and more attractive because it can remarkably reduce processing time and increase productivity. However, the commonly used gear steels which are microalloyed by Al are not suitable for high temperature carburization due to abnormal grain coarsening. The gear steel 20CrMnTiNb, which is microalloyed with 0. 048% Nb and 0. 038% Ti, has been compared with the gear steel 20CrMn in terms of microstructure in the case of hardened layer and in the core after carburizing at 1000 °C for 4 h and mechanical properties after carburizing and pseudo-carburizing. The results indicate that the fine austenite grains exist in the carburized case of 20CrMnTiNb steel, while there is abnormal coarsening and duplex grain structure in the case and core of steel 20CrMn. The average prior austenite grain sizes are 19.5 and 34.2 μm for the steels 20CrMnTiNb and 20CrMn, respectively. In addition, the mechanical properties of 20CrMnTiNb steel are superior to those of 20CrMn steel. In particular, the HV hardness of the former is higher than that of the latter by about 40–70 in the range of less than 0.7 mm in depth. Therefore, the steel 20CrMnTiNb is suitable for high temperature carburization.  相似文献   

10.
11.
12.
用薄晶体透射电镜研究锰对热轧空冷后低碳Si-Mn双相钢的组织和力学性能的影响。实验结果表明:钢中锰含量为1.79%时,显微组织中出现珠光体。拉伸工程应力-应变曲线有明显物理屈服延伸。钢中锰含量越少、珠光体量越多时,应力-应变曲线上屈服平台越长。锰含量大于2.09%时,轧态组织中不再出现非马氏体型转变产物珠光体。轧态组织中的马氏体岛区,由几个微区组成。这些微区分别为内孪晶马氏体区和位错板条马氏体区。  相似文献   

13.
细晶组织耐候钢热影响区粗晶区的组织和性能   总被引:2,自引:0,他引:2  
 采用焊接热模拟技术研究了焊接热循环对细晶组织09CuPCrNi钢热影响区粗晶区 (CGHAZ)显微组织和性能的影响。结果表明,在800~500 ℃冷却时间t8/5≤8 s时,该钢CGHAZ组织为贝氏体和少量马氏体。随着t8/5延长,在原奥氏体晶界上逐渐析出先共析铁素体,当t8/5>18 s时,显微组织由大量铁素体和珠光体组成,且原奥氏体晶粒明显粗化,先共析铁素体含量增加。在-20 ℃和0 ℃下,t8/5对冲击吸收功影响较小,在-40 ℃时,随着t8/5延长,冲击吸收功下降显著,而且随着t8/5延长,CGHAZ硬度逐渐下降,但硬度值均高于母材,焊接热影响区相对于母材未出现软化倾向。  相似文献   

14.
节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能   总被引:5,自引:0,他引:5  
从热处理工艺对室温拉伸性能的影响和试验温度对拉伸性能的影响两个方面分析了1Cr17Mn9Ni4N钢组织和力学性能之间的关系。试验结果表明:随着固溶处理温度(950~1075℃)的提高,强度降低、塑性提高;水冷或空冷对力学性能的影响不大;材料的锻比对力学性能具有一定的影响;与同类钢相比,1Cr17Mn9Ni4N钢具有优异的室温和低温力学性能。该钢在低温变形时的TRIP效应是低温综合力学性能良好的根本原因。  相似文献   

15.
16.
17.
18.
Hot stamping is a technique to produce ultra high strength automobile components. The common material used in hot stamping process is coated and/or uncoated 22MnB5 boron alloyed steel. Ferritic‐pearlitic microstructure in as‐delivered sheets is transformed to fully lath martensitic after hot stamping. In the present research, hot stamping under water or nitrogen cooling media was investigated using different boron alloyed steel grades. Microstructural analyses, linear and surface hardness profiling as well as tensile tests of hot stamped samples were performed. Various microstructures of fully bainitic and/or fully martensitic were produced. The resulting microstructures provided yield strengths of 650–1370 MPa and tensile strengths of 850–2000 MPa. There is an optimum carbon equivalent content for which the highest formability index value, UTS × A25, is achieved. Using a nitrogen cooled punch resulted in higher yield strength without significant changes in ultimate tensile strength. It is concluded that a wide range of B‐bearing steels having an extended carbon equivalent range with an acceptable formability index value can be used by increasing the cooling rate in the die assembly.  相似文献   

19.
The effects of austempering on the microstructures and mechanical performances of cast high carbon silicon and manganese steel (HCSMS) containing 1.0 wt.%C‐2.5 wt.%Si‐1.5 wt.%Mn‐1.0 wt.%Cr‐0.5 wt.%Cu were studied. The test results show a plate‐like morphology of bainitic ferrite. Each plate of the ferrite is surrounded by a thin layer of retained austenite when the austempering temperature is low, whereas large blocky areas of retained austenite are observed when the temperature is higher. The amount of retained austenite in the bainitic structure increases with increasing isothermal quenching temperature. Austempering results in a significant improvement in the mechanical performances of HCSMS. The main effect of the austempering temperature on the mechanical performances is that hardness and strength are decreased and elongation, impact toughness and fracture toughness are increased with increasing temperature. Cast HCSMS has excellent comprehensive mechanical performance when austenized at 593K.  相似文献   

20.
采用放电等离子烧结技术制取不同TiC含量的WC-8Co硬质合金。分析了TiC含量对WC-8Co基硬质合金刀具材料的致密度、力学性能和微观组织的影响。实验结果表明,随着TiC含量增加,WC-8Co硬质合金常温综合力学性能先提高后降低,添加5%(质量分数)TiC的WC-8Co硬质合金具有较好的综合力学性能。当烧结温度和压力分别为1 250℃、50 MPa时,WC-5TiC-8Co硬质合金材料致密度、维氏硬度、断裂韧性以及室温下的抗弯强度分别达到98.85%、19.49 GPa、9.46 MPa·m1/2和1 893 MPa。硬质合金致密化烧结曲线和组织显微形貌的分析结果表明,随着TiC含量增加,硬质合金的致密化烧结的起始温度向更低的温度偏移,Co相流动性变差,从而导致致密化烧结条件变差。试样中孔隙增多,是硬质合金维氏硬度和力学性能下降的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号