首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Woody debris has several important roles in running water. Less is known about the ecology of wood in great rivers than in smaller rivers and streams. We used a probability survey to estimate the abundance of littoral and shoreline wood along the following mid‐continent great rivers of the United States in summer 2004–2006: the Missouri River, Upper Mississippi River, and the Ohio River. We counted wood pieces >0.3 m in diameter from a zone between the bank full level out into the river 10 m. We categorized wood according to its origin and function as “beached” (transported from upriver but not providing aquatic habitat), “wet” (origin unknown and providing aquatic habitat; includes snags), or “anchored” (attached to the bank at its current location and providing aquatic habitat). We counted 5900 pieces of wood at 447 sites across rivers. Approximately 56 percent of pieces were beached, 30 percent were wet, and 14 percent were anchored. Overall, mean abundance of wood was 2.6 pieces of wood 100 m?1 of shoreline (approximately 3.0 m3 100 m?1). Abundance of wood (pieces per unit distance of river) was much lower than has been reported for many smaller streams and rivers. There was more wood along the Upper Mississippi River (3.3 pieces 100 m?1) than elsewhere (≤2.4 pieces 100 m?1). The mean abundance of wood on the Ohio River decreased significantly between the 2004 and 2005 survey periods due to high flows. Longitudinal patterns in wood abundance were weak. There was less anchored and wet wood along shorelines protected by revetment (e.g., rip rap). There was generally more wood along shorelines where the riparian land use was characterized as forest rather than agriculture or developed. Mean abundance of wood along forested, un‐revetted shorelines was approximately four pieces 100 m?1 of shoreline (= 80 pieces km?1 of river). This estimate of mean wood abundance for what amounts to least disturbed riparian and shoreline conditions is relevant for great river bioassessment and management. Published in 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In‐depth knowledge of the fluvial corridor and surrounding slopes and forest vegetation is needed for a better understanding of wood recruitment or inputs to rivers. The information available in Central Spain on hydrogeomorphic processes and forest distribution enabled the evaluation of potential wood recruitment from three sources: landslides, bank erosion and fluvial transport during floods on a regional scale. The method presented here is based on a geographical information system (GIS) and on multi‐criteria and multi‐objective assessment using fuzzy logic principles. First, the areas potentially affected by landslides, bank erosion and floods were delineated, and a vegetation analysis was carried out to obtain the vegetation resistance and forest density. Several scenarios were proposed based on the process frequency and severity. Using this method, the volume of potentially available wood can be estimated for each scenario. Fourteen river basins in populated areas were selected for further analyses and field survey. Observations of in‐stream storage of woody debris and tree disturbances were used to interpret the woody debris dynamics throughout the watershed and validate the obtained results. This method offers a suitable approach to define a watershed's capacity to recruit wood material to streams by delineating the source areas and estimating the order of magnitude of the wood volume in each case. The results may be useful to characterize the dynamics of woody debris from the perspective of the potential hazard of its transport during floods, and they can also be used for forest and river management and restoration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Methodologies that have been developed to quantify large woody debris (LWD) have been largely tested and adapted for mountain streams of the Pacific Northwest, characterised by a very high density of LWD, composed of large pieces of wood. In French rivers, LWD studies have focused on larger systems presenting low density and discrete distributions of LWD accumulations, where existing methods could not readily be used. We thus propose an easy-to-use method to quantify LWD within such systems. After defining three representative types of LWD, the volume is obtained by representing each LWD accumulation by a simple geometric form in order to measure its height, width and length. A model is then built for the different accumulation types to estimate wood mass from the measured volume. Since the measured volume is a combination of air and wood, we quantified the proportion of air, which is, respectively, equal to 18, 90 and 93% for trunks, wood jams and shrubs. To understand variability in wood mass, we evaluated the influence of different factors on wood density (defined as the ratio between mass and volume). The main factor was found to be the water absorption capacity of the wood, whereas a lesser factor was the degree of wood decay. Most wood pieces were found to increase their mass by an average of 100% and more after only 24 h in contact with water. Moreover, the observed levels of water loss and water absorption during the first 24 h of removal or exposure to water imply major short-term variations in wood mass, which may have significant consequences for wood transport during flooding. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The formation of large woody debris (LWD) piles has a profound impact on channel patterns and riparian succession in temperate rivers. The opportunity to study LWD along the Sabie River, a river in the semi‐arid region of Kruger National Park, South Africa, arose in February 2000 after a significant flood (c. 100‐year return interval) removed a large proportion of the fully mature riparian forest and other plant communities. Much of the uprooted vegetation was deposited as LWD piles (woody vegetation accumulations deposited on the ground > 0.1 m3) throughout the riparian and upland zones. In this article we describe the spatial distribution patterns of LWD as related to geomorphic channel type and flood frequency zone, and assess pile composition characteristics six months after the flood. Within the areas surveyed there were 68 LWD piles per hectare, the median size of LWD piles was 4.6 m3 but pile sizes (by volume) varied widely. Pool/rapid geomorphic channel types had the highest density of LWD piles (79 ha?1) and the largest piles (by volume) were in the bedrock anastomosing channels (mean = 124 m3). Piles were larger in the seasonal and ephemeral flood frequency zones (mean = 54 m3 and 55 m3) than piles in the active zone (c. 2 m3). The patterns of distribution and volume of LWD will affect the subsequent development of vegetation communities as debris piles form a mosaic of patches of surviving organisms and propagules that can strongly influence the initial trajectory of succession. The amount, distribution, and subsequent decomposition of LWD are different from that reported for temperate rivers, suggesting that the role of LWD may be different on non‐floodplain rivers such as the Sabie in semi‐arid South Africa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Little is known about changes in the composition of dead wood jams along rivers and the possible consequences of any such changes on the river ecosystem. Although tree zonation along the upstream‐to‐downstream continuum is weak and highly variable from a system to another, a clear transition appears in the piedmont zone, which is reflected by transitions in dead wood sources as well as for dead wood transport, storage and decomposition processes. In this paper, we focus on large lowland rivers of southwestern France, where riparian vegetation is increasingly fragmented, reduced in area and/or is entirely replaced by planted forests (poplar plantations). The amount and the potential role of dead wood is practically unknown in these rivers. One reason is that French legislation obliges landowners and public service managers to remove all material from the stream in order to maintain unobstructed river flows. The other reason is that unlike pristine streams in northern regions, these rivers have been regulated for several decades (Adour River) or even for several centuries (Garonne River). The vegetation component of the managed riparian landscape has changed in particular as a result of i) a decrease in stream dynamics, ii) the replacement of natural forests by planted ones, and iii) the invasion of natural communities by introduced woody species. The possible consequences of biological invasions on the role of dead wood jams are discussed in light of: i) a local study of wood jams along a moderately modified system; ii) changes observed in the composition of trees along the Adour River over the past 10 years; iii) a regional case study involving two chosen species. Whereas white willow populations are declining along streams in southwestern France, the box‐elder, introduced from the United States, has spread extensively in the last two decades. Statistical models would suggest that competitive pressures are limited between these two species, boxelder is expected to replace white willow in the near future as a consequence of an increase in river regulation and global warming. This can be expected to have important consequences on dead wood dynamics, and on the management of woody debris, especially since trends indicate a replacement of softwood species by hardwood species. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements of individual downed trees (species, dbh, orientation, distance from base‐flow channel and condition) were made across replicated riparian landforms in a Gulf Coastal Plain 5th‐order stream. Annually, the fate of these trees was determined and newly recruited trees were noted. More than 300 downed trees have been recorded. Recruitment varied across landforms with more constrained reaches having greatest mortality. Total tree mortality varied substantially across years. Generally, tree recruitment was greatest in years with substantial floods (1994 and 1998). For each riparian landform type, tree mortality was correlated with the maximum daily flow during the period preceding annual debris surveys. This relationship was particularly strong for sand ridges (r2 = 0.942) and low terraces (r2 = 0.915), but was significant for floodplains (r2 = 0.413). Greatest rates of debris recruitment per maximum daily flow were observed for sand ridges followed by low terraces. Flood characteristics also influenced debris recruitment. The 1994 flood was caused by a tropical storm and resulted in a rapid rise in streamflow. Much of the debris recruited during this flood was from toppled trees and was oriented parallel to the stream channel. In contrast, the 1998 flood was preceded by a wetter than average winter with more gradually rising flows and there was no relationship between riparian landform and debris characteristics. These results indicate that wood recruitment dynamics in Coastal Plain streams are complex. Wood recruitment rates are controlled by cyclical variations in climate interacting with riparian geomorphology. Infrequent high flows appear critical in the maintenance of the instream debris pool. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Extensive desnagging (removal of large woody debris and living riparian vegetation) and associated river improvement works were conducted in rivers of southeastern Australia (Victoria and New South Wales) between at least 1886 and 1995. Swamp drainage, large woody debris removal and vegetation clearing were strongly supported by legislation, government funding and institutional arrangements in both states. As a result, large amounts of large woody debris were removed from rivers, regenerating indigenous vegetation was cleared from within designed alignment widths and, ironically, huge numbers of exotic trees, especially willows, were planted. The environmental impacts of desnagging have only been documented on a few impacted rivers but have included increased flow velocity, spatially extensive bed degradation, massive channel enlargement and loss of fish habitat. Recognition of the need for more integrated land and water management, and new research on the hydraulic, geomorphic, biogeographic and ecological significance of large woody debris and the values of indigenous riparian vegetation during the 1980s led to a major shift in river rehabilitation. We have drawn on our own and other published research to further develop a set of guidelines for the incorporation of large woody debris into river rehabilitation plans. Our guidelines extend those recently prepared for southeastern Australia and address site selection, where to place timber, the amount to be introduced, how to distribute it, techniques of introduction and woody debris sources. However, in the long term, riparian vegetation rehabilitation within the potential recruitment zone is essential to supply large woody debris. Given that our results demonstrate that very large woody debris makes a significant contribution to the total loading, it will be a very long time (>100 years) before natural recruitment can be recreated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
As a part of a study investigating the hydraulic effects of large woody debris (LWD) in lowland rivers, a series of small-scale experiments were conducted in a rectangular glass-walled recirculating flume. These experiments were undertaken to determine the order of magnitude of the increase in flood levels caused by LWD at different positions within a channel cross-section. Position variables that were considered in these experiments were height above bed, angle to flow direction, and separation distance in the direction of flow. This study was undertaken to quantify the hydraulic benefits (primarily reduced flood levels) gained by the removal of LWD from lowland rivers, which is a common practice in several countries. From an integrated river management perspective it is necessary to weigh any hydraulic benefits of LWD removal up against the environmental costs of loss of faunal habitat, and possible geomorphic instability. The results of these experiments indicate that the levels of LWD commonly occurring in the lowland rivers of southeastern Australia seldom cause any significant effect on flood levels. However, where LWD occur at channel constrictions, or where unusually high densities of LWD are present, the effect on flood levels will be significant.  相似文献   

11.
Most of the large rivers are heavily degraded and lack near‐natural conditions due to high human pressure (agricultural use and settlements) especially on former inundation areas. Hence, it is rarely possible to ‘restore’ predisturbance conditions of rivers and their floodplains. Further, river or floodplain restoration programs are often based on type‐specific reference conditions. Those reference conditions are mainly determined on the basis of historical maps not giving any information of, for example, sediment supply, flood frequency and vegetation cover (density). Especially for improving the ecological status of rivers with abandoned channel features, key habitats for target fish species have to be restored by reconnecting floodplains and their secondary channel system. In addition, because of the necessity of improving the ecological status, there is growing interest in interdisciplinary river restoration techniques. Within the presented article, an integrative concept is derived based on Light Detection and Ranging measurements and numerical modelling with respect to river dynamics (hydrologic and morphological). Further habitat modelling, based on unsteady depth‐averaged two‐dimensional hydrodynamics, is applied with a focus on the mesounit scale. For testing the conceptual model, various river reaches at the Morava River were selected, featuring different morphological characteristics. It was found that the applied management concept allows considering the important issues of river dynamics (morphological/hydrologic) using a flow‐ and flood‐pulse approach for identifying bottlenecks of target species at the Morava River. The reconnection of abandoned channels will result in an increase of hydromorphological heterogeneity and/or woody debris within the study reach. This might be of high relevance for habitat features (e.g. backwater habitats) especially for flow pulses between low flow and mean flow and/or in reaches without abandoned channels between low‐flow and the bankfull stage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
To determine whether large wood (LW, ≥1‐m length, ≥10‐cm diameter) plays a role in Chinook salmon (Oncorhynchus tshawytscha) redd (i.e. egg nest) placements in a regulated, Mediterranean‐climate, medium‐sized river (where channel width is less than the upper quartile of length of potential instream wood pieces), characteristics of 527 large wood pieces, locations of 650 redds, and mesohabitat delineations (riffle, run, glide, pool) were collected during a spawning season along a 7.7 km reach directly below Camanche Dam on the Mokelumne River, CA. LW was regularly distributed across the study reach an average 70 LW pieces km‐1. Some LW clustering was evident at islands and meander bends. Spawners built 85% of redds within one average channel width (31 m) of LW. Spawners utilized LW within a 10 m radius 36% of the time in the upper 3 km rehabilitated reach, and 44% of the time in the lower 4.7 km marginal habitat reach. A greater percentage of LW was utilized in riffles in the upper 3 km reach where 90% of redds were built, while a larger percentage of spawners used LW in riffles in the lower 4.7 km reach. LW‐redd interactions occurred at greater rates than by random chance alone in the lower 4.7 km reach, which implies that LW aids spawning in marginal habitats. River managers and salmonid spawning habitat rehabilitation (SHR) projects should take LW additions into consideration as an important component of river rehabilitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Radiotelemetry was used to investigate detailed movement and summer habitat of brown trout Salmo trutta (size range 157–488 mm TL, n=18) in the Kananaskis River, Alberta. Flows in the Kananaskis River respond to pulsed daily discharge from an upstream hydroelectric generating facility (range 0.15–25 m3 s−1). Wetted area available for brown trout doubled during periods of high flow. Fluctuating river levels did not appear to influence the degree to which brown trout moved within the study site. However, there was evidence that brown trout used cover and pools more as discharge increased. During high flow conditions, brown trout used similar depths (63 cm), and significantly lower surface water velocities than during low flow conditions. Brown trout also moved closer to shore into interstitial spaces among woody debris and root complexes during high flow. Pool habitats were used most often compared with all other habitat types combined. Pools with large woody debris accounted for 75% of all habitat observations. Woody debris was used more often than all other cover types. Results of the study indicate that the effects of river regulation on brown trout appear to have been moderated by woody debris in pools and along river banks, which provided refuge from high water velocities during periods of high flow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Historical trends in hydrology, geomorphology, and floodplain vegetation provide fundamental contexts for designing future management of large rivers, an area of fluvial research extensively informed by studies of historical channel dynamics. Changes in hydrology, channel structure, floodplain forests, and large wood were documented for the 273‐km main stem of the Willamette River from 1850 to present. Reduced sediment supply and frequency and magnitude of floods have decreased channel mobility and incised channels, leading to fewer gravel bars, islands, and side channels. Human alteration of channel morphology, vegetation, and bank hardening has exacerbated channel simplification caused by reductions in floods, sediment supply, and inputs of wood. A substantial number of floodplain channels reoccupied remnants of previous active channels inundated during recent floods, demonstrating functional but often forgotten role of historical geomorphic structure in modern floodplains and flood processes. In most reaches, area of floodplain forests in 1990 was only 10% to 25% of the area of forests in 1850. Abundance of wood in the wetted channel was generally greater in reaches with higher abundances of floodplain forests. Future trajectories will be influenced by legacies of the historical river but increasingly will reflect evolution of a new river shaped by human development, changing climate, and emerging hydrogeomorphic and vegetation processes. Understanding historical characteristics and anticipating future rates and patterns of ecosystem change provide fundamental contexts for restoring biophysical processes and structure in a large floodplain river.  相似文献   

15.
Large woody debris (LWD) is an important ecological element in rivers and streams. Despite its importance, LWD is often removed from urban stream channels for flood control or road maintenance purposes, an approach with high economic and ecological costs and one that is largely unsuccessful. We propose an approach to conserve LWD in channels by modifying infrastructure (culverts and bridges) to allow LWD passage, maintaining aquatic habitat and reducing flooding and road maintenance costs. In Soquel Creek (California, USA), which has a history of LWD‐related flooding, we compared long‐term LWD management costs of historical, current and a LWD‐passing approach whereby infrastructure is enlarged to accommodate LWD passage downstream. We estimated costs of infrastructure replacement, programmatic flood control (LWD removal), LWD‐related flood damage and lost aquatic habitat. The amount of lost aquatic habitat was determined by comparing LWD loading (pieces m?1) in Soquel Creek (0.007 pieces m?1) to nearby unmanaged streams (0.054 to 0.106 pieces m?1). Estimated costs of infrastructure able to pass LWD were nearly double that of historical costs but comparable to current costs. The LWD‐passing approach was comparable to removal approaches in the short term (1 to 50 years) but much less in the long term (51 to 100 years), as expenditures in infrastructure replacement to accommodate LWD yielded reductions in flooding costs and habitat loss. Given the urgency to maintain and restore aquatic habitat, the proposed approach may be broadly applicable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The natural tendency of woody debris to accumulate into complex debris jams has been adapted by the restoration industry because of the morphological and ecological benefits of these structures. While much work has been done on woody debris, there is a lack of understanding of the dynamics of debris jams including the controls on their formation and the associated changes in hydraulics. Treatment of jams as static structures, whose hydraulics may be described by that of a single‐solid object, prevents optimal success of wood‐based restoration projects. This paper reviews the state of the science on the initiation and accumulation of wood forming a debris jam. This review is used to develop a conceptual model of the evolution of a single debris jam focussing on the relationship between the structure and hydraulics and the feedback that exists between them. The proposed mechanisms behind debris jam evolution are supported by a case‐study of three natural jams. Incorporation of this model into restoration and management plans will result in more successful and cost‐efficient projects. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Many streams have been modified so extensively that river managers do not have clear reference conditions to frame targets for stream restoration. Large woody debris (LWD) has long been recognized as an important influence on both geomorphic and ecologic processes in stream channels; however, there have been few studies of LWD dynamics in New England. Although this region is heavily forested today, the forest is predominantly young (70–90 years old) regrowth following a historical episode of severe deforestation. This study presents the results of an extensive census of LWD and associated stream characteristics in over 16 river kilometres of northeastern Connecticut streams and represents the first reported inventory of wood loading and sorting in Southern New England. Results of this study indicate that wood loading and jam frequencies in the study region are low: 2.5–17.8 and 0.5–5.51 per 100 m, respectively. Orientation of LWD is predominantly parallel to flow, an indication that these streams are not retaining organic matter or sediment, which has important geomorphic and ecologic implications. Results imply that stream recruitment of LWD is still lagging from the massive forest conversions of the 18th and 19th centuries. Given the low wood loadings observed in the study reaches, manual wood addition and continued forest regeneration would likely improve both habitat diversity and organic matter and fine sediment retention in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
中波水电站位于西藏昌都地区玉曲河下游河段,经调查库区内共发育8条较大泥石流沟谷,是影响水电站施工与运营安全的地质隐患之一。在分析泥石流发育地质环境背景的基础上,评价了各沟泥石流危险程度,并着重从泥石流入汇堵江、冲击淤埋和水库淤积3个方面讨论了其工程影响。研究成果表明①库区泥石流沟不具备堵江的入汇条件;②泥石流百年内输砂总量301.77万m3,仅占水库总库容的1.125%;③须重点关注近坝的扎拉沟,泥石流危险性大,直接威胁枢纽区施工安全。研究成果对水工设计方案确定和防灾减灾都具有实际的工程意义。  相似文献   

19.
渭河下游近期淤积发展情况的分析研究   总被引:5,自引:0,他引:5  
三门峡水库于1960年9月建成并投入运用已38年。本文分析了渭河下游在近期的淤积发展情况,潼关高程一直居高不下,渭河下游泥沙淤积急剧增加,主槽过洪能力锐减,同流量洪水位迅速抬升,洪水灾害日趋频繁,防洪形势十分严峻,本文并对泥沙淤积发展的原因进行了分析研究,为渭河下游的防洪和工程治理提供科学的依据。  相似文献   

20.
It is well known that large woody debris (LWD) plays an important functional role in aquatic organisms' life. However, the influence of LWD on channel morphology and aquatic environments at watershed levels is still unclear. The relationships between wood and surface structure and aquatic habitat in 35 first through fifth order streams of southern interior British Columbia were investigated. Study streams in the channel networks of the study watersheds were classified into four size categories based on stream order and bankfull width: Stream size I: bankfull width was less than 3 m, Stream size II: 3–5 m, Stream size III: 5–7 m, Stream size IV: larger than 7 m. We found the number of functional pieces increased with stream size and wood surface area in stream sizes I, II and III (24, 28 and 25 m2/100 m2, respectively) was significantly higher than that in stream size IV (12 m2/100 m2). The contribution of wood pieces to pool formation was 75% and 85% in stream sizes II and III, respectively, which was significantly higher than those in stream size I (50%) and size IV (25%). Between 21% and 25% of wood pieces were associated with storing sediment, and between 20% and 29% of pieces were involved in channel bank stability in all study streams. Due to long‐term interactions, LWD in the intermediate sized streams (Size II and III) exhibited much effect on channel surface structure and aquatic habitats in the studied watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号