首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The aim of this study was to identify whether environmental flows released into two lowland rivers (the Glenelg and Wimmera Rivers, western Victoria, Australia) during the spring to autumn period had successfully ameliorated the negative effects of multiple human impacts. Macroinvertebrates and a range of physico‐chemical variables were sampled from three reaches in each river. Both rivers were sampled during three environmental release seasons with average‐sized releases (1997–1998, 1998–1999 and 2001–2002) and two drought seasons with limited releases (1999–2000 and 2000–2001). The effects of releasing average‐sized environmental flows on macroinvertebrates and physico‐chemical variables were assessed by comparison with data from the two drought seasons. For the Glenelg River, data from a reference season prior to the release of environmental flows (1995–1996) was also compared to data from the five environmental flow seasons. Multivariate analyses revealed four pieces of evidence indicating that the release of environmental flows effectively slowed the process of environmental degradation in the Glenelg River but not in the Wimmera River: (1) the magnitude of the river discharge was dependent on the size of environmental flow releases; (2) in the Wimmera River, water quality deteriorated markedly during the two drought seasons and correlated strongly with macroinvertebrate assemblage structure, but this was not observed in the Glenelg River; (3) the taxonomic composition of the macroinvertebrate assemblages among contrasting flow release seasons reflected the severe deterioration in water quality of the Wimmera River; (4) despite two drought seasons with minimal environmental flow releases, the macroinvertebrate assemblage in the Glenelg River did not differ from the average‐release seasons, nor did it return to a pre‐environmental flows condition. Therefore, it appears that environmental flow releases did sustain the macroinvertebrate assemblage and maintain reasonable water quality in the Glenelg River. However, in the Wimmera River, release volumes were too small to maintain low salinities and were associated with marked changes in the macroinvertebrate assemblage. Therefore, there are multiple lines of evidence that environmental flow releases of sufficient magnitude may slow the process of degradation in a regulated lowland river. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Urban rivers are often engineered to increase flood conveyance and stabilize channel size and position. This paper analyses habitat surveys of 180 urban river stretches of differing engineering type from four river basins (river Tame, West Midlands, UK; tributaries of the lower river Thames, UK; river Botic, Prague, Czech Republic; river Emscher, North‐Rhine Westphalia, Germany). Kruskal–Wallis tests identify significant differences in extent and/or frequency of flow types, bank and bed physical habitats, and vegetation characteristics associated with different styles of engineering. Principal Components Analysis identifies four key environmental gradients in the data set: sediment supply and retention; extent and diversity of in‐channel vegetation and riparian trees; bed and bank sediment calibre; flow type energy and complexity. These gradients discriminate stretches of differing planform, cross section and reinforcement and are significantly correlated with indices of degree and type of bank and bed reinforcement, pollution and presence of alien nuisance plant species. The analytical results illustrate statistically significant associations between different styles and levels of engineering intervention and the number and nature of physical habitats present in urban rivers. The results provide a basis for filtering sites for potential remedial measures prior to site‐specific surveys and modelling, for comparing sites and for tracking trajectories of change at sites that are subject to changes in channel engineering. They provide evidence that river condition and degree of engineering are not inversely related in a simple linear way, and that engineering of urban river channels, in the form of mixed, patchy reinforcement can contribute a great deal to habitat diversity where other controls on flow heterogeneity are more difficult to manipulate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Environmental flows are now a standard part of sustainable water management globally but are only rarely implemented. One reason may be insufficient engagement of stakeholders and their priority outcomes in the environmental flow‐setting process. A recent environmental flow assessment (EFA) in the Kilombero basin of the Rufiji River in Tanzania concentrated on a broad‐based investigation of stakeholders' use and perceptions of the ecosystem services provided by the river as a framework for the assessment of flow regimes that would maintain them. The EFA process generally followed the Building Block Methodology but within an enhanced stakeholder engagement framework. Engagement began with the involvement of institutional stakeholders to explain the purpose of the EFA and to elicit their priority outcomes. Extensive interactions with direct‐use stakeholders followed to investigate their uses of and priorities for the rivers. Results were used by the EFA specialist team in choosing flow indicators and defining measurable environmental objectives. The specialists then met to reach a consensus of the flow requirements. The EFA results were lastly reported back to stakeholders. During the Kilombero EFA, we learned that stakeholders at all levels have a good awareness of the natural services provided by a healthy river and can contribute to the setting of environmental objectives for the rivers and floodplain. These can be factored into the biophysical assessments of river flows required to maintain habitats, processes, water quality, and biodiversity. It is therefore important to allocate significant resources to stakeholder engagement. It now remains to be seen if enhanced stakeholder engagement, including the increased understanding and capacity built among all stakeholders, will increase support for the implementation of the recommended flows.  相似文献   

4.
Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar‐specific models of discharge‐area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing‐dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

5.
6.
Many river restoration projects are focusing on restoring environmental flow regimes to improve ecosystem health in rivers that have been developed for water supply, hydropower generation, flood control, navigation, and other purposes. In efforts to prevent future ecological damage, water supply planners in some parts of the world are beginning to address the water needs of river ecosystems proactively by reserving some portion of river flows for ecosystem support. These restorative and protective actions require development of scientifically credible estimates of environmental flow needs. This paper describes an adaptive, inter‐disciplinary, science‐based process for developing environmental flow recommendations. It has been designed for use in a variety of water management activities, including flow restoration projects, and can be tailored according to available time and resources for determining environmental flow needs. The five‐step process includes: (1) an orientation meeting; (2) a literature review and summary of existing knowledge about flow‐dependent biota and ecological processes of concern; (3) a workshop to develop ecological objectives and initial flow recommendations, and identify key information gaps; (4) implementation of the flow recommendations on a trial basis to test hypotheses and reduce uncertainties; and (5) monitoring system response and conducting further research as warranted. A range of recommended flows are developed for the low flows in each month, high flow pulses throughout the year, and floods with targeted inter‐annual frequencies. We describe an application of this process to the Savannah River, in which the resultant flow recommendations were incorporated into a comprehensive river basin planning process conducted by the Corps of Engineers, and used to initiate the adaptive management of Thurmond Dam. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The Murray–Darling Basin in south‐eastern Australia contains over 70,000 km2 of wetlands and floodplains, many of which are in poor condition. In response, Australian governments have committed to a major restoration program, the Murray–Darling Basin Plan that includes management of 2,750 Gl of environmental water to protect and restore aquatic ecosystems. The restoration is being undertaken within an adaptive management framework that includes monitoring the outcomes of environmental flows in seven river valleys. This paper provides an overview of the 5‐year monitoring project and some preliminary results. Monitoring design considered the Basin Plan's environmental objectives, conceptual models of ecosystem responses to flow, and an outcomes framework linking flow responses to the environmental objectives. Monitoring indicators includes ecosystem type, vegetation, river metabolism, and fish. Responses are evaluated to identify the contribution of environmental flows to Basin Plan environmental objectives and continual improvements in management. The program is unique in that it seeks to monitor long‐term outcomes of environmental flows at the river basin scale. Despite many challenges, the monitoring has become a key part of the adaptive management of environmental flows in the Murray–Darling Basin.  相似文献   

8.
There is widespread application of indicators to the assessment of environmental condition of streams. These indicators are intended for use by managers in making various comparative and absolute assessments and often have a role in resource allocation and performance assessment. Therefore, the problem of formally defining confidence in the results is important but difficult because the sampling strategies used are commonly based on a compromise between the requirements of statistical rigour and the pragmatic issues of access and resources. It is rare to see this compromise explicitly considered and consequently there is seldom quantification of the uncertainty that could affect the confidence a manager has in an indicator. In this paper, we present a method for quantitatively assessing the tradeoffs between sampling density and uncertainty in meeting various monitoring objectives. Assessments using judgement‐based representative reaches are shown to be unreliable; instead a sampling approach is recommended based on the random selection of measuring sites. A detailed dataset was collected along two streams in Victoria, Australia, and the effect of sampling density was assessed by subsampling from this dataset with precision related to the number of sites assessed per reach length and the intensity of the sampling at each site. The sampling scheme to achieve a given precision is shown to depend on the monitoring objective. In particular, three objectives were considered: (1) making a baseline assessment of current condition; (2) change detection; and (3) detection of a critical threshold in condition. Change detection is shown to be more demanding than assessing baseline condition with additional sampling effort required to achieve the same precision. Sampling to detect a critical threshold depends on nominating acceptable values of Type I and II error and the size of the effect to be detected. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The evolution of the entrance channel of the Snowy River estuary in response to river regulation and climate change is predicted. The predictions are made in terms of the physical attractors that define possible long‐term states of the estuary entrance condition. The classification of these attractors shows the dependence of the entrance stability on the catchment inflows and the present entrance depth. The Snowy River estuary in south‐eastern Australia is a barrier estuary with an unstable entrance that tends to closure. The classification from the attractor map shows that the estuary entrance has changed from predominantly stable to a predominantly unstable state attributable to diversion of water from the upper catchment. The introduction of a series of environmental flow regimes, commencing in 2002, has returned 8% rising to 21% of the mean annual natural flow, but this study shows that the releases provide limited improvement in entrance stability. Additionally, the predicted effects of climate change for this region include increased mean sea level (MSL), decreased annual rainfall, and increased incidence of storms. These changes will decrease stability, primarily through the rise in MSL. The rise in sea level will increase the plan area of the tidal basin, increasing the tidal prism, and hence drawing in more marine sand. The application to the Snowy River estuary provides a proof of concept of the attractor classification to support estuary management.  相似文献   

11.
Analysis of inflections or breakpoints apparent in relationships between measures of wetted perimeter and discharge can be used to assist in the determination of minimum environmental flows for perennial rivers. This paper suggests refinements and provides an example application of the wetted perimeter method for the determination of cease‐to‐pump limits in a perennial, unregulated gravel‐bed river subject to increasing levels of surface water extraction. HEC‐GeoRAS modelling outputs of riffle wetted area are used to illustrate that the magnitude of the discharge selected to represent 100% habitat availability is of crucial importance to the breakpoint method. Because of the dependence of the technique on this assumption, we suggest that it is prudent to use an upper and lower limiting discharge based on an assessment of the degree of flow variability to develop a flow range around the zone of diminishing return in the wetted perimeter to discharge relationship. For rivers exhibiting a low degree of flow variability, the mean and median daily flows are likely to provide appropriate discharges for representation of 100% habitat availability. For perennial rivers with a higher degree of flow variability and considerable differences between the mean and median daily flows we suggest use of the 50th and 80th flow duration percentiles. Wetted perimeter breakpoint results are also influenced by the degree to which areas of non‐riffle habitat are included in the analysis. Inclusion of excessive pool areas can lead to significant reductions in resultant recommendations for cease‐to‐pump limits or minimum environmental flows. Integration of hydraulic model outputs with GIS for wetted perimeter analysis of riffles provides a useful, rapid, field‐based approach that can assist with determination of cease‐to‐pump limits or minimum environmental flows in gravel‐bed rivers. However, care is needed in its application and interpretation as the technique is prone to numerous subjective choices that have a substantial influence on results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
There is a global need for management of river flows to be informed by science to protect and restore biodiversity and ecological function while maintaining water supply for human needs. However, a lack of data at large scales presents a substantial challenge to developing a scientifically robust approach to flow management that can be applied at a basin and valley scale. In most large systems, only a small number of aquatic ecosystems have been well enough studied to reliably describe their environmental water requirements. The umbrella environmental asset (UEA) approach uses environmental water requirements developed for information‐rich areas to represent the water requirements of a broader river reach or valley. We illustrate this approach in the Murray–Darling Basin (MDB) in eastern Australia, which was recently subject to a substantial revision of water management arrangements. The MDB is more than 1 million km2 with 18 main river valleys and many thousands of aquatic ecosystems. Detailed eco‐hydrologic assessments of environmental water requirements that focused on the overbank, bankfull and fresh components of the flow regime were undertaken at a total of 24 UEA sites across the MDB. Flow needs (e.g. flow magnitude, duration, frequency and timing) were established for each UEA to meet the needs of key ecosystem components (e.g. vegetation, birds and fish). Those flow needs were then combined with other analyses to determine sustainable diversion limits across the basin. The UEA approach to identifying environmental water requirements is a robust, science‐based and fit‐for‐purpose approach to determining water requirements for large river basins in the absence of complete ecological knowledge. © 2015 The Authors. River Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

13.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
European river basin authorities are responsible for the implementation of the new river basin management plans in accordance with the European Water Framework Directive. This paper presents a new methodology framework and approach to define and evaluate environmental flow regimes in the realistic complexities that exist with multiple water resource needs at a basin scale. This approach links river basin simulation models and habitat time series analysis to generate ranges of environmental flows (e‐flows), which are evaluated by using habitat, hydropower production and reliability of water supply criteria to produce best possible alternatives. With the use of these tools, the effects of the proposed e‐flows have been assessed to help in the consultation process. The possible effects analysed are impacts on water supply reliability, hydropower production and aquatic habitat. After public agreements, a heuristic optimization process was applied to maximize e‐flows and habitat indicators, while maintaining a legal level of reliability for water resource demands. The final optimal e‐flows were considered for the river basin management plans of the Duero river basin. This paper demonstrates the importance of considering quantitative hydrologic and ecological aspects of e‐flows at the basin scale in addressing complex water resource systems. This approach merges standard methods such as physical habitat simulations and time series analyses for evaluating alternatives, with recent methods to simulate and optimize water management alternatives in river networks. It can be integrated with or used to complement other frameworks for e‐flow assessments such as the In‐stream Flow Incremental Methodology and Ecological Limits of Hydrologic Alteration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Species traits of 57 Odonata species occurring in the Austrian bioregion Eastern Ridges and Lowlands (ecoregion Hungarian Lowlands; Illies, 1978 ) were defined by factor loadings of 12 habitat parameters: stream sections crenon, rhithron and potamon; flow velocity; standing water; temporary water; size of water body; open water; open banks; submerged macrophytes; reed; and riparian trees. On the basis of the species‐specific configurations of these habitat parameters, cluster analysis revealed seven dragonfly associations with different habitat needs: association of open waters, association of sparsely vegetated banks, association of reed and riparian trees, association of reed and submerged macrophytes, association of temporary waters, rhithron association and potamon association. Correlations between the associations' habitat requirements and the habitat parameters of the seven (near‐)natural river types, which are present in this bioregion were performed to define river type‐specific association compositions. From these results, a dragonfly association index was created to assess the ecological status of these rivers within the five‐tiered system of the European Union Water Framework Directive, emphasizing hydro‐morphological aspects by comparing the type‐specific reference situation with the actual status quo of dragonfly colonization. The method was applied at different rivers, particularly for the purpose of evaluating restoration measures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human‐induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non‐impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human‐induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co‐influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non‐impoundment sections of rivers. After excluding river size and land‐use influences, our results clearly demonstrate that dams have significant impacts on fish biotic‐integrity and habitat‐and‐social‐preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
中国北方河流环境容量核算方法研究   总被引:11,自引:0,他引:11  
中国北方河流径流量较小、季节性变化较大,为准确核算其水环境容量,把河道水体按上游到下游划分为河道、拦河闸水体和感潮河段3种类型水体,其环境容量之和为河流的环境容量。对不同的水体分别运用河流一维水质模型、湖库均匀混合模型和河口一维水质模型确定这3种水体的环境容量。本文以大沽河为例,采用实测的水质、水文数据资料,建立了流速和流量、综合衰减系数和流速之间的相关关系,分别计算各类水体的环境容量。计算结果表明,拦河闸水体和感潮河段的环境容量占河流总容量的80%以上,是河流水环境容量的重要组成部分。  相似文献   

18.
A PRESUMPTIVE STANDARD FOR ENVIRONMENTAL FLOW PROTECTION   总被引:1,自引:0,他引:1  
The vast majority of the world's rivers are now being tapped for their water supplies, yet only a tiny fraction of these rivers are protected by any sort of environmental flow standard. While important advances have been made in reducing the cost and time required to determine the environmental flow needs of both individual rivers and types of rivers in specific geographies, it is highly unlikely that such approaches will be applied to all, or even most, rivers within the forseeable future. As a result, the vast majority of the planet's rivers remain vulnerable to exploitation without limits. Clearly, there is great need for adoption of a “presumptive standard” that can fill this gap. In this paper we present such a presumptive standard, based on the Sustainability Boundary Approach of Richter (2009) which involves restricting hydrologic alterations to within a percentage‐based range around natural or historic flow variability. We also discuss water management implications in applying our standard. Our presumptive standard is intended for application only where detailed scientific assessments of environmental flow needs cannot be undertaken in the near term. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Water management agencies throughout Australia are attempting to find a balance between the water requirements of ecological and socio‐economic environments as part of a holistic approach to managing flow‐dependent river ecosystems. Environmental water provisions are under consideration for the Ord River in far northern Western Australia. This river has been regulated for irrigation and there are plans for substantial expansion. Like other semi‐arid and tropical rivers, however, the hydrology of the Ord River is highly variable and unpredictable, and therefore, proportionate water release strategies for the environment that are based on average monthly flows are unsuitable. Regulation continues to produce pronounced ecological changes throughout the river system as the impacts of flow regime are negated. There is a dichotomy in optimal flow regimes for the contrasting management aspirations of ecological restoration based on low seasonal flows, and the dilution flows required for the drainage of agricultural effluent. Whilst current agricultural land and water management practices continue, the two cannot coincide, and consequently, a decision should be made regarding which environmental water allocation holds the primary value. Such a decision would guide the appropriate dry season flow regime on the lower Ord River. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号