首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
随着全球胍胶价格的上涨,低浓度胍胶压裂液在低渗透储层具有良好的应用前景。与常规压裂液体系相比,低浓度胍胶压裂液体系具有低表面张力、低残渣、低伤害、低成本、易返排的优势。通过对比不同体系不同浓度的胍胶压裂液充填裂缝导流能力伤害实验,定量分析各压裂液体系对裂缝导流能力的伤害率,可以直观评价低浓度胍胶压裂液对储层的伤害特点,为低浓度胍胶压裂液优选应用提供重要依据。  相似文献   

2.
利用破胶剂技术优化裂缝导流能力   总被引:1,自引:0,他引:1  
  相似文献   

3.
提高压裂裂缝有效导流能力是改善气藏压裂效果的重要方面.本文从提高裂缝初始导流能力、降低导流能力的伤害、保持裂缝长期导流能力等方面系统分析了近年来实现高导流能力的一些典型压裂工艺技术措施,包括:二次加砂压裂、端部脱砂压裂、提高支撑缝宽的超常规压裂、高砂比大粒径压裂、低伤害压裂液压裂、防支撑剂回流压裂等工艺.通过其施工工艺和技术特点的分析,为气藏压裂工艺技术措施选择提供依据.  相似文献   

4.
变裂缝导流能力下水力压裂整体优化设计方法   总被引:14,自引:9,他引:5  
就油田开发过程中水力裂缝导流能力不断降低这一特点,提出了注水开发的低渗透油田变裂缝导流能力下水力压裂整体优化设计的新方法。该方法以注采井组为研究对象,建立了新的经济模型。考虑了压、注、采的费用或收益,并应用模拟退火算法优化缝长和裂缝导流能力。计算结果表明,提高裂缝妆始导流能力民是低渗透油田压裂效果的基础。  相似文献   

5.
裂缝导流能力是水力压裂中一个重要的设计参数。在国内外已有研究的基础上,着重考虑了裂缝导流能力随着时间和缝长的变化,建立了模拟压裂井裂缝导流能力的二维单相的物理模型和数学模型,并对模型进行了数值求解。通过给出的实例计算,从一定程度上验证了模型的实用性和可行性,对准确认识裂缝导流能力、完善压裂设计、优化油气井的增产措施都提供了有益的指导。  相似文献   

6.
支撑剂嵌入对水力压裂裂缝导流能力的影响   总被引:7,自引:0,他引:7  
根据室内实验,对蒙纳尔钢片、砂岩岩心板和泥岩岩心板在相同的铺置浓度和相同的裂缝闭合应力下的缝宽、渗透率以及导流能力进行了比较,就支撑剂嵌入对于裂缝宽度、渗透率以及导流能力的伤害等影响做了详细的研究。研究发现,支撑剂在裂缝闭合后将不可避免的嵌入到岩层中,砂岩纯度越高,其嵌入越小,从而对于支撑裂缝缝宽和导流能力影响越小,泥质含量越高,则其嵌入越严重,支撑裂缝的导流能力损失就越大;而对于蒙纳尔钢片几乎没有嵌入,其导流能力跟嵌入几乎没有关系。  相似文献   

7.
裂缝导流能力是水力压裂中一个重要的设计参数。在国内外已有研究的基础上,着重考虑了裂缝导流能力随着时间和缝长的变化,建立了模拟压裂井裂缝导流能力的二维单相的物理模型和数学模型,并对模型进行了数值求解。通过给出的实例计算,从一定程度上验证了模型的实用性和可行性,对准确认识裂缝导流能力、完善压裂设计、优化油气井的增产措施都提供了有益的指导。  相似文献   

8.
Q241断块提高压裂裂缝导流能力技术研究与应用   总被引:1,自引:0,他引:1  
提高压裂裂缝导流能力是改善压裂效果的重要方面。根据Q241断块储层高孔、中渗、中等偏强水敏、支撑剂嵌入较为严重及地层出砂等特点,指出了Q241断块压裂改造的重点应该是提高裂缝导流能力。从提高裂缝导流能力、降低导流能力的伤害及保持裂缝导流能力等方面入手。系统分析了目前国内外实现高导流能力的一些典型压裂技术措施,确定了适合Q241断块的压裂技术。现场实施3口井,取得了明显的增产效果。  相似文献   

9.
低渗透油藏支撑裂缝长期导流能力实验研究   总被引:14,自引:12,他引:14  
结合胜利油区低渗透油藏的特征,运用FCES-100裂缝导流仪,进行了支撑剂充填裂缝长期导流能力实验,考察了不同闭合压力、支撑剂嵌入与否、不同浓度和用量的压裂液对支撑剂充填裂缝导流能力的伤害程度,分析了各种因素对导流能力的伤害机理。实验结果表明,闭合压力每增加1MPa,导流能力下降1.86μm2·cm,支撑剂的嵌入可使导流能力最多下降46.7%,压裂液残渣的伤害可使导流能力降低90%以上。提出了通过加大铺砂浓度减小各种因素对导流能力伤害程度的方法。实验结果对支撑剂的选择、压裂液的研制以及现场施工都有积极的指导意义。  相似文献   

10.
水力压裂已广泛用于油气藏开发,而裂缝导流能力是压裂优化设计的重要指标.目前很少有研究涉及到楔形裂缝的导流能力,而水力压裂后裂缝多呈现为近井筒处开口大,远井筒处开口小的楔形.在考虑支撑剂嵌入、裂缝形态(楔形)的基础上,建立了支撑裂缝导流能力计算模型,通过与文献中的数据对比验证了模型的准确性,并分析了关键参数对裂缝导流能力的影响.结果表明:沿着裂缝远离井筒,导流能力降低,降低趋势为裂缝跟端附近降低快、趾端附近降低慢;支撑剂嵌入导致有效流动空间减小、裂缝导流能力降低;裂缝宽度一定时,支撑剂越小,裂缝有效流动空间越小,导流能力越低.该文提出的支撑裂缝导流能力计算模型很容易嵌入到压裂数值模拟软件中,具有广泛的应用前景.  相似文献   

11.
12.
支撑裂缝的导流能力是评价页岩储层水力压裂施工效果的一项重要参数,其大小受到多种因素影响。文中开展了支撑剂类型、颗粒大小、铺砂浓度等对支撑裂缝导流能力影响的室内实验研究。结果表明:陶粒的导流能力明显高于石英砂和覆膜砂,在低闭合压力条件下,20~40目陶粒的导流能力最大,在高闭合压力条件下,组合支撑剂的导流能力明显高于单一支撑剂;铺砂浓度越大,裂缝导流能力越大;循环应力加载模式下,裂缝导流能力比稳载时下降了31.7%,经过滑溜水和胍胶压裂返排液污染后,裂缝导流能力分别下降了33.9%和76.5%。研究成果指导了X-4井的现场压裂施工,该井措施后产气量较高且稳定生产,压裂增产效果较好。  相似文献   

13.
该文以王徐庄油田沙一下生物灰岩为例,详细论述了储集层裂缝的判别。通过利用地应力分布状态、构造形迹特征判定裂缝展布方向;采用示踪剂监测、电位法井间监测和油水井注采动态关系分析井间裂缝的连通性及展布方向;依据岩心微观分析资料、电测井曲线综合响应进行单井裂缝层段的识别与划分。对王徐庄油田下一步开发工作具有指导作用。  相似文献   

14.
本次研究综合应用成像测井和岩心资料来识别裂缝。从井震联合层位标定入手,以弹性参数特征分析为基础,利用叠前地震资料,建立裂缝地震响应模式,分析裂缝各向异性对应的地震属性变化规律,用地震叠前叠后多属性预测的裂缝进行约束和验证,通过分方位角各向异性分析,裂缝参数计算,优选地震属性,获得裂缝展布方位和发育密度等参数。  相似文献   

15.
对影响支撑裂缝导流能力的两个重要因素非达西流效应、多相流效应进行了系统实验研究,考虑了不同粒径、不同闭合应力、不同支撑剂类型以及不同含水饱和度对多相、非达西流效应的影响。研究表明:非达西流效应与充填层孔隙度、渗透率、支撑剂圆球度、分选度以及表面光滑度有关;多相流主要与含水饱和度以及渗透率有关。非达西流效应使充填层渗透率降低近1倍,多相流效应使充填层渗透率降低了6倍,两种效应同时存在使渗透率下降了近一个数量级。所以,压裂设计前必须对充填层实际导流能力有清醒的认识,才能取得更好的压裂效果。  相似文献   

16.
在大多数的低渗透油气藏中,特别是页岩储层中,通常发育着丰富的天然裂缝。所以在页岩储层水力压裂的过程中,人工裂缝与天然裂缝之间所存在的关系以及相互作用,是很有必要对其进行探索及研究的。本文应用Franc2D/L软件,进行了模拟试验,目的是分析出在水力压裂过程中,人工裂缝与天然裂缝有什么样的相互影响。从得出来的数据可以得到它们相互作用的结果,这一结论的获得能够为体积压裂效果评价打下基础。  相似文献   

17.
杨银山  陈浩军 《石油仪器》2011,25(4):49-51,9
以地质研究为基础,开展南八仙油田N22、N12、N1主要层段试注水效果评价,通过对主力区块试注水井影响注水因素分析,揭示注水开发过程中存在的主要问题,通过油藏合理的经济方案指标计算,结合油藏潜力评价,提出了改善油田开发效果调整意见。  相似文献   

18.
大庆油田在致密油砂岩储层体积压裂上取得了较好效果,但裂缝形成机理认识不清,制约技术的进一步提高。为了明确大庆松北地区致密砂岩储层裂缝形态特征,采用水力压裂模拟装置,在真三轴条件下对天然致密砂岩岩心进行了水力压裂物理模拟实验,分析了注入压力曲线特征和岩心裂缝形态变化规律。结果表明,裂缝形态主要受水平主应力差控制,层理特征对裂缝形态影响明显;脆性指数及杨氏模量对裂缝形态影响不明显。当水平主应力差小于3 MPa时,储层层理特征越明显,压裂后水力裂缝越容易沟通层理弱面并发生转向,裂缝形态越趋于复杂。  相似文献   

19.
中东及中亚地区碳酸盐岩储层弹性模量较低,仅为中国碳酸盐岩储层弹性模量的1/2~1/3。这类储层酸压后增产有效期短、裂缝导流能力难于保持。为此开展了室内实验,研究储层弹性模量、排量和酸压工艺对裂缝导流能力的影响。结果表明:对于低弹性模量(<20 GPa)碳酸盐岩来说,采用胶凝酸酸压,在闭合应力超过20 MPa后导流能力无法保持;对于低弹性模量碳酸盐岩,高排量比低排量的导流能力强。高闭合应力条件下,闭合酸化可以有效提高裂缝导流能力,且闭合酸化时低排量注酸导流能力提高效果更好。中东S油田碳酸盐岩酸压后虽然产生大量的酸蚀蚓孔,但没有形成有效的导流能力,采用加砂压裂后导流能力更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号