首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the concept of integrating a tactile sensor based, automated part measuring technique and a CAD programming scheme to perform off-line programming for a welding robot. The techniques used to achieve data flow throughout the production process include coordinate system referencing, interactive programming, tactile sensing seam tracing, and coordinate transformation. Together they form the backbone of the idea of integrating measurement and production operations where continuous path geometrical control is required. Techniques for referencing a workpiece with respect to different handling devices, and positioning the part on a suitable fixture, form an important portion of this work. Consequently, the positioning aspect and the data transfer capability between stages in the production process are highlighted. The welding of lap-joint type seams serves as an example. The integration of automated measurement and off-line robot programming actually constitutes a flexible manufacturing system operation that is capable of assuring the required process control. In this regard, linking a robot with an automated part measuring technique forms an important step towards upgrading a robot device from a difficult to program unit to a unit with a high degree of flexibility with rapid, convenient automatic contour programming.  相似文献   

2.
The programming of robots is slowly evolving from traditional teach pendant methods to graphical Off-Line Programming (OLP) methods. Graphical simulation tools, such as OLP, are very useful for developing and testing robot programs before they are run on real industrial equipment. OLP systems are also used to develop task level programs. Traditional OLP systems, however, suffer from the limitations of using only position control which does not account for inherent robot inaccuracies and dynamic environments. This paper describes our work on improving and supplementing traditional position control programming methods. A baseline OLP system was implemented at NIST's Automated Manufacturing Research Facility (AMRF). Experience gained in implementing this system showed that an effective OLP system must accurately simulate the real world and must support sensor programming to compensate for real-world changes that cannot be simulated. The developed OLP geometric world model is calibrated using robot mounted ultrasound ranging sensors. This measurement capability produces a baseline geometric model of relatively good static accuracy for off-line programming. The graphical environment must also provide representations of sensor features. For this specific application, force is simulated in order to include force based commands in our robot programs. These sensor based programs are able to run reliably and safely in an unpredictable industrial environment. The last portion of this paper extends OLP and describes the functionality of a complete system for programming complex robot tasks.  相似文献   

3.
《电子技术应用》2017,(5):15-20
基于离线编程技术的喷涂机器人轨迹生成已成为喷涂机器人控制方法的发展趋势。通过对现有的六轴机器人轨迹生成方案的分析和研究,提出了在喷涂轨迹设计中增加第七轴的方案。该方案通过改变六轴机器人的运动方式扩展了机器人的可达空间,使其能够完成复杂工件曲面的喷涂。实验结果表明,与传统的六轴机器人轨迹生成方案相比,所提出的方案对于复杂曲面的喷涂效果更好,更适于实际工业应用。  相似文献   

4.
The collection and treatment of waste poses a major challenge to modern urban planning, particularly to smart cities. To cope with this problem, a cost-effective alternative to conventional methods is the use of Automated Vacuum Waste Collection (AVWC) systems, using air suction on a closed network of underground pipes to transport waste from the drop off points scattered throughout the city to a central collection point. This paper describes and empirically evaluates a novel approach to defining daily operation plans for AVWC systems to improve quality of service, and reduce energy consumption, which represents about 60% of the total operation cost. We model a daily AVWC operation as a Markov decision process, and use Approximate Dynamic Programming techniques (ADP) to obtain optimal operation plans. The experiments, comparing our approach with the current approach implemented in some real-world AVWC systems, show that ADP techniques significantly improve the quality of AVWC operation plans.  相似文献   

5.
In this paper, a potential‐based path‐planning algorithm for a high DOF robot manipulator is proposed. Unlike some c‐space‐based approaches, which often require expensive preprocessing for the construction of the c‐space, the proposed approach uses the workspace information directly. The approach computes, similar to that done in electrostatics, repulsive force and torque between objects in the workspace. A collision‐free path of a manipulator will then be obtained by locally adjusting the manipulator configuration to search for minimum potential configurations using that force and torque. The proposed approach is efficient because these potential gradients are analytically tractable. Simulation results show that the proposed algorithm works well, in terms of computation time and collision avoidance, for manipulators up to 9 degrees of freedom (DOF). © 2005 Wiley Periodicals, Inc.  相似文献   

6.
针对传统的示教编程方式存在操作复杂,效率低,危险性高等不足,严重限制了工业机器人的推广应用。基于自然的人机交互示教方式,提出了一种基于计算机视觉的相机空间工业机器人智能虚拟编程方法,本方法不需要实际操作示教盒和机器人本体,仅采用辅助示教工具在视觉相机空间示教就实现了工业机器人的虚拟编程。主要研究了实现该方案的关键技术即基于相机空间映射模型的视觉定位技术以及基于K-means聚类算法实现的相机空间映射关系自学习技术。最后,基于自主开发的机器人平台,开展基于相机空间的虚拟智能编程实验,验证了本文提出的相机空间工业机器人智能编程方法的可行性及正确性。  相似文献   

7.
We consider the use of quadratic approximate value functions for stochastic control problems with input‐affine dynamics and convex stage cost and constraints. Evaluating the approximate dynamic programming policy in such cases requires the solution of an explicit convex optimization problem, such as a quadratic program, which can be carried out efficiently. We describe a simple and general method for approximate value iteration that also relies on our ability to solve convex optimization problems, in this case, typically a semidefinite program. Although we have no theoretical guarantee on the performance attained using our method, we observe that very good performance can be obtained in practice.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Current parallel systems composed of mixed multi/manycore systems and/with GPUs become more complex due to their heterogeneous nature. The programmability barrier inherent to parallel systems increases almost with each new architecture delivery. The development of libraries, languages, and tools that allow an easy and efficient use in this new scenario is mandatory. Among the proposals found to broach this problem, skeletal programming appeared as a natural alternative to easy the programmability of parallel systems in general, but also the GPU programming in particular. In this paper, we develop a programming skeleton for Dynamic Programming on MultiGPU systems. The skeleton, implemented in CUDA, allows the user to execute parallel codes for MultiGPU just by providing sequential C++ specifications of her problems. The performance and easy of use of this skeleton has been tested on several optimization problems. The experimental results obtained over a cluster of Nvidia Fermi prove the advantages of the approach.  相似文献   

9.
Recently, various robot off-line programming systems have promoted their own robot data models, resulting in a plethora of robot representation methods and unchangeable data files among CAx and robot off-line programming systems. The current paper represents a STEP-compliant Industrial Robot Data Model (IRDM) for data exchange between CAx systems and robot off-line programming systems. Using this novel representation method, most resources involved in a robot manufacturing system can be represented. The geometric and mathematic aspects of industrial robots have been defined in IRDM, so that the robot off-line programming system could have abundant information to represent robots’ kinematic and dynamic behaviors. In order to validate the proposed models and approaches, a prototype robot off-line programming system with 3D virtual environment is presented. The functionalities of IRDM not only have significant meaning for providing a unified data platform for robot simulation systems, but also have the potential capability to represent robot language using the object-oriented concept.  相似文献   

10.
Programming for large‐scale, multicore‐based architectures requires adequate tools that offer ease of programming and do not hinder application performance. StarSs is a family of parallel programming models based on automatic function‐level parallelism that targets productivity. StarSs deploys a data‐flow model: it analyzes dependencies between tasks and manages their execution, exploiting their concurrency as much as possible. This paper introduces Cluster Superscalar (ClusterSs), a new StarSs member designed to execute on clusters of SMPs (Symmetric Multiprocessors). ClusterSs tasks are asynchronously created and assigned to the available resources with the support of the IBM APGAS runtime, which provides an efficient and portable communication layer based on one‐sided communication. We present the design of ClusterSs on top of APGAS, as well as the programming model and execution runtime for Java applications. Finally, we evaluate the productivity of ClusterSs, both in terms of programmability and performance and compare it to that of the IBM X10 language. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We present a programming language for robots which we have implemented based on the Ada language. It is an interpreted language which permits dynamic configuration of software. It manipulates Ada tasks and subroutines. One of the Ada tasks is an inference engine of a logic programming language adapted to real-time constraints. We show how the conjunction of Ada tasks, to perform perception and action functions on the robot, to logic programs, for the control of these tasks, both manipulated by the IAda language, gives a powerful environment for robot programming.  相似文献   

12.
Human–robot collaboration will be an essential part of the production processes in the factories of tomorrow. In this paper, a human–robot hand‐over control strategy is presented. Human and robot can be both giver and receiver. A path‐planning algorithm drives the robotic manipulator towards the hand of the human and permits to adapt the pose of the tool center point of the robot to the pose of the hand of the human worker. The movements of the operator are acquired with a multi 3D‐sensors setup so to avoid any possible occlusion related to the presence of the robot or other dynamic obstacles. Estimation of the predicted position of the hand is performed to reduce the waiting time of the operator during the hand‐over task. The hardware setup is described, and the results of experimental tests, conducted to verify the effectiveness of the control strategy, are presented and discussed.  相似文献   

13.
Joint simultaneous localization and mapping (SLAM) constitutes the basis for cooperative action in multi‐robot teams. We designed a stereo vision‐based 6D SLAM system combining local and global methods to benefit from their particular advantages: (1) Decoupled local reference filters on each robot for real‐time, long‐term stable state estimation required for stabilization, control and fast obstacle avoidance; (2) Online graph optimization with a novel graph topology and intra‐ as well as inter‐robot loop closures through an improved submap matching method to provide global multi‐robot pose and map estimates; (3) Distribution of the processing of high‐frequency and high‐bandwidth measurements enabling the exchange of aggregated and thus compacted map data. As a result, we gain robustness with respect to communication losses between robots. We evaluated our improved map matcher on simulated and real‐world datasets and present our full system in five real‐world multi‐robot experiments in areas of up 3,000 m2 (bounding box), including visual robot detections and submap matches as loop‐closure constraints. Further, we demonstrate its application to autonomous multi‐robot exploration in a challenging rough‐terrain environment at a Moon‐analogue site located on a volcano.  相似文献   

14.
The use of Graphics Processing Units (GPUs) for high‐performance computing has gained growing momentum in recent years. Unfortunately, GPU‐programming platforms like Compute Unified Device Architecture (CUDA) are complex, user unfriendly, and increase the complexity of developing high‐performance parallel applications. In addition, runtime systems that execute those applications often fail to fully utilize the parallelism of modern CPU‐GPU systems. Typically, parallel kernels run entirely on the most powerful device available, leaving other devices idle. These observations sparked research in two directions: (1) high‐level approaches to software development for GPUs, which strike a balance between performance and ease of programming; and (2) task partitioning to fully utilize the available devices. In this paper, we propose a framework, called PSkel, that provides a single high‐level abstraction for stencil programming on heterogeneous CPU‐GPU systems, while allowing the programmer to partition and assign data and computation to both CPU and GPU. Our current implementation uses parallel skeletons to transparently leverage Intel Threading Building Blocks (Intel Corporation, Santa Clara, CA, USA) and NVIDIA CUDA (Nvidia Corporation, Santa Clara, CA, USA). In our experiments, we observed that parallel applications with task partitioning can improve average performance by up to 76% and 28% compared with CPU‐only and GPU‐only parallel applications, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Multi‐core processors offer a huge potential of parallelism but pose a challenge of program development for achieving high performance in real applications. We compare three popular parallel programming models—POSIX threads (Pthreads), OpenMP, and Threading Building Blocks (TBB)—regarding their use for multi‐core systems. We analyze how these models can be employed for implementing various parallelizations of a real‐world application from the area of medical imaging, and we conduct extensive runtime experiments to measure performance. Our main contribution is a comprehensive comparison of Pthreads, OpenMP, and TBB with respect to the following criteria: program development effort, programming style, level of abstraction, and runtime performance on multi‐cores. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents a simulation‐based strategy for sizing the actuators of a redundantly actuated robotic mechanism. The class of robotic mechanisms we consider may contain one or more closed loops and possess an arbitrary number of active and passive joints, and the number of actuators may exceed the mechanism's kinematic degrees of freedom. Our approach relies on a series of dynamic simulations of the mechanism, by applying Taguchi's method to systematically perform the simulations. To efficiently perform each of the dynamic simulations, we develop, using tools from modern screw theory, new recursive algorithms for the forward and inverse dynamics of the class of redundantly actuated mechanisms described. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
This paper proposes a framework for industrial and collaborative robot programming based on the integration of hand gestures and poses. The framework allows operators to control the robot via both End-Effector (EE) and joint movements and to transfer compound shapes accurately to the robot. Seventeen hand gestures, which cover the position and orientation controls of the robotic EE and other auxiliary operations, are designed according to cognitive psychology. Gestures are classified by a deep neural network, which is pre-trained for two-hand pose estimation and fine-tuned on a custom dataset, achieving a test accuracy of 99%. The index finger’s pointing direction and the hand’s orientation are extracted via 3D hand pose estimation to indicate the robotic EE’s moving direction and orientation, respectively. The number of stretched fingers is detected via two-hand pose estimation to represent decimal digits for selecting robot joints and inputting numbers. Finally, we integrate these three manners seamlessly to form a programming framework.We conducted two interaction experiments. The reaction time of the proposed hand gestures in indicating randomly given instructions is significantly less than that of other gesture sets, such as American Sign Language (ASL). The accuracy of our method in compound shape reconstruction is much better than that of hand movement trajectory-based methods, and the operating time is comparable with that of teach pendants.  相似文献   

18.
It is hard to imagine living in a building without electricity and a heating or cooling system these days. Factories and data centers are equally dependent on a continuous functioning of these systems. As beneficial as this development is for our daily life, the consequences of a failure are critical. Malfunctioning power supplies or temperature regulation systems can cause the close-down of an entire factory or data center. Heat and air conditioning losses in buildings lead to a large waste of the limited energy resources and pollute the environment unnecessarily. To detect these flaws as quickly as possible and to prevent the negative consequences constant monitoring of power lines and heat sources is necessary. To this end, we propose a fully automatic system that creates 3D thermal models of indoor environments. The proposed system consists of a mobile platform that is equipped with a 3D laser scanner, an RGB camera and a thermal camera. A novel 3D exploration algorithm ensures efficient data collection that covers the entire scene. The data from all sensors collected at different positions is joined into one common reference frame using calibration and scan matching. In the post-processing step a model is built and points of interest are automatically detected. A viewer is presented that aids experts in analyzing the heat flow and localizing and identifying heat leaks. Results are shown that demonstrate the functionality of the system.  相似文献   

19.
We describe complementary iconic and symbolic representations for parsing the visual world. The iconic pixmap representation is operated on by an extensible set of “visual routines” (Ullman, 1984; Forbus et al., 2001). A symbolic representation, in terms of lines, ellipses, blobs, etc., is extracted from the iconic encoding, manipulated algebraically, and re-rendered iconically. The two representations are therefore duals, and iconic operations can be freely intermixed with symbolic ones. The dual-coding approach offers robot programmers a versatile collection of primitives from which to construct application-specific vision software. We describe some sample applications implemented on the Sony AIBO. David S. Touretzky is a Research Professor in the Computer Science Department and the Center for the Neural Basis of Cognition at Carnegie Mellon University. He earned his B.A. in Computer Science from Rutgers University in 1978, and his M.S. (1979) and Ph.D. (1984) in Computer Science from Carnegie Mellon. Dr. Touretzky’s research interests are in computational neuroscience, particularly representations of space in the rodent hippocampus and related structures, and high level primitives for robot programming. He is presently developing an undergraduate curriculum in cognitive robotics based on the Tekkotsu software framework described in this article. Neil S. Halelamien earned a B.S. in Computer Science and a B.S. in Cognitive Science at Carnegie Mellon University in 2004, and is currently pursuing his Ph.D. in the Computation & Neural Systems program at the California Institute of Technology. His research interests are in studying vision from both a computational and biological perspective. He is currently using transcranial magnetic stimulation to study visual representations and information processing in visual cortex. Ethan J. Tira-Thompson is a graduate student in the Robotics Institute at Carnegie Mellon University. He earned a B.S. in Computer Science and a B.S. in Human-Computer Interaction in 2002, and an M.S. in Robotics in 2004, at Carnegie Mellon. He is interested in a wide variety of computer science topics, including machine learning, computer vision, software architecture, and interface design. Ethan’s research has revolved around the creation of the Tekkotsu framework to enable the rapid development of robotics software and its use in education. He intends to specialize in mobile manipulation and motion planning for the completion of his degree. Jordan J. Wales is completing a Master of Studies in Theology at the University of Notre Dame. He earned a B.S. in Engineering (Swarthmore College, 2001), an M.Sc. in Cognitive Science (Edinburgh, UK, 2002), and a Postgraduate Diploma in Theology (Oxford, UK, 2003). After a year as a graduate research assistant in Computer Science at Carnegie Mellon, he entered the master’s program in Theology at Notre Dame and is now applying to doctoral programs. His research focus in early and medieval Christianity is accompanied by an interest in medieval and modern philosophies of mind and their connections with modern cognitive science. Kei Usui is a masters student in the Robotics Institute at Carnegie Mellon University. He earned his B.S. in Physics from Carnegie Mellon University in 2005. His research interests are reinforcement learning, legged locomotion, and cognitive science. He is presently working on algorithms for humanoid robots to maintain balance against unexpected external forces.  相似文献   

20.
Integrated architecture for industrial robot programming and control   总被引:6,自引:0,他引:6  
As robot control systems are traditionally closed, it is difficult to add supplementary intelligence. Accordingly, as based on a new notion of user views, a layered system architecture is proposed. Bearing in mind such industrial demands as computing efficiency and simple factory-floor operation, the control layers are parameterized by means of functional operators consisting of pieces of compiled code that can be passed as parameters between the layers. The required interplay between application-specific programs and built-in motion control is thereby efficiently accomplished. The results from experimental evaluation and several case studies suggest the architecture to be very useful also in an industrial context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号