首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper Mississippi River ecological integrity has been severely compromised by human activity during the last 50 years. In response to the continuing decline of natural resource values, two approaches for protecting and improving the Upper Mississippi River-floodplain ecosystem have been used. Habitat rehabilitation and enhancement projects are being constructed at 54 locations to provide site-specific rehabilitation. The projects are designed to counteract the adverse ecological effects of sedimentation through (1) flow introductions, (2) the isolation of backwaters; and (3) flow diversions and wave breaks. Channel maintenance projects are being re-evaluated in an attempt to construct or modify existing river training structures that are environmentally sympathetic. The latter approach works with the river's energy, whereas the former attempts to overcome riverine processes. Both approaches have significant limitations because they affect limited areas. A proposal is presented that restores some ecosystem integrity by re-establishing occasional low river stages that occurred before the implementation of the Upper Mississippi River Navigation System.  相似文献   

2.
We examined inter‐habitat variation in benthic macroinvertebrate assemblages in the 180‐km Garrison Reach of the Upper Missouri River, North Dakota (USA) in 2001–2003. The Garrison Reach is unchannelized with a mostly rural setting. Flows are regulated by Garrison Dam. We sampled benthos from three habitats defined a priori: channel, shoreline, and backwater. Benthic assemblages were different in each habitat. Average Bray‐Curtis dissimilarity in assemblage composition ranged from 89% for backwater versus channel habitat to 70% for backwater versus shoreline habitat. There were distinct intra‐habitat groups within a priori habitats: channel assemblages included moving‐sand assemblages and other‐substrate channel assemblages; backwater assemblages included connected (to the river channel) and unconnected backwater assemblages; shorelines assemblages varied between natural (unprotected) and riprap (rock revetment) shorelines. Abundance and taxa richness were lowest and spatial variability highest for moving‐sand channel assemblages. Abundance was highest in backwaters. Taxa richness in backwaters and along channel shorelines were similar. Assemblages in all three habitats were dominated by Nematoda, Oligochaeta and Chironomidae. Taxa in these groups comprised at least 80% of mean abundance in all three habitats. Taxa that discriminated among habitats included the psammophilic chironomid Chernovskiia for moving‐sand channel substrates versus all other habitats; Hydroptila (Trichoptera) for riprap vs natural shorelines, Aulodrilus (Oligochaeta) for connected versus unconnected backwaters; and Nematoda for backwater versus channel and shoreline versus channel. Based on overlap patterns in benthic assemblages among habitats, we concluded that sampling main channel shorelines should also capture much of the natural and stressor‐induced variation in connected backwater and channel habitat exclusive of moving‐sand channel habitat. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

3.
Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large‐scale modification of those rivers. This study examined whether the effects of restoration efforts—specifically those of island construction—within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476 ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12‐ (mayflies) or 14‐year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large‐scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

4.
The McClellan–Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477‐km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1–17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Natural hydrogeomorphic characteristics and hydrologic alterations are important ecological drivers, and hydrology is also a common ecological, flood control and navigation system indicator. Hydrologic characteristics change dramatically from one end of the Upper Mississippi River System to the other, and hydraulic characteristics also differ spatially across the river channels and floodplain in response to dams, levees and diversions. Low flow surface water spatial change in response to navigation and flood control has been well known for many years, but little information was available on the spatial distribution of frequent floods. The flow frequency data presented here were developed to better estimate contemporary floods after historic flooding in 1993. Flood stage estimates are enhanced in GIS to help quantify and map potential floodplain inundation for more than 1000 river miles on the Upper Mississippi and Illinois Rivers. Potential flood inundation is mapped for the 50% to 0.2% annual exceedance probability flood stage (i.e. 2‐ to 500‐year expected recurrence interval flood) and also for alternative floodplain management scenarios within the existing flood protection infrastructure. Our analysis documents: (i) impoundment effects, (ii) a hydrologic gradient within the navigation pools that creates repeating patterns of riverine, backwater and impounded aquatic habitat conditions, (iii) potential floodplain inundation patterns for over 2 million acres and (iv) several integrated floodplain management scenarios. Extreme flood events are more common in recent decades, and they are expected to continue to occur at greater frequency in response to climate change. Floodplain managers can use the results presented here to help optimize land management and flood damage reduction on the Upper Mississippi River System. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
The Upper Mississippi River is maintained in its current navigable state through impoundments, dredging, and other engineering projects. These stressors, along with anthropogenic impacts and natural system processes, led to declines in aquatic vegetation and the loss of fish and wildlife habitat, with a major downturn the late 1980s and early 1990s. Large‐scale restoration projects, such as the one evaluated here, are primarily designed to rehabilitate and enhance fish and wildlife habitat. We determined whether an individual restoration project, construction of an island complex, fulfilled a programmatic goal of re‐establishing diverse and abundant native aquatic vegetation. Eighteen years of aquatic vegetation monitoring data from impact and reference areas were compared to evaluate the anticipated direct effects (within 400 m of the constructed islands) and indirect effects (>400 m downstream of constructed islands) of restoration. Impact areas were also compared with an unrestored negative reference area ~200 km downstream of the project and with a positive reference area in adjacent, relatively natural backwaters. Only indirect effects of restoration were evident. Prevalence and species richness of aquatic vegetation in both of the impact areas and in the negative reference area increased prior to restoration, suggesting large‐scale improvement independent of the project examined here. Indirect effects were demonstrated as further increases in both prevalence and species richness coinciding with restoration in the area >400 m downstream of the restoration. We conclude that increased abundance and diversity of aquatic vegetation was partially achieved, with observed improvements potentially linked to reduced wind fetch.  相似文献   

7.
Seasonal flooding of riverine backwaters is important in maintaining diverse aquatic habitats, but anthropogenic impacts have reduced the frequency and duration of such flooding. This study, conducted in a 2.5‐km‐long shallow floodplain severed meander backwater adjacent to the Coldwater River in Tunica County, Mississippi, USA, compared water quality during a late summer 30‐day artificial flooding period with 28‐day pre‐flood and 26‐day post‐flood periods. Flooding was simulated by pumping 0.22 to 0.35 m3 s?1 from the river into the upstream portion of the backwater. In situ parameters (temperature, pH, dissolved oxygen, conductivity and fluorescent chlorophyll) were measured every 30 min at one site within the backwater. Solids (dissolved and suspended) and nutrients (phosphorus and nitrogen) were measured at three sites in the backwater and in the river every 3 to 5 days. Decreases in the amplitude of temperature, dissolved oxygen and pH diel cycles within the backwater were observed during flooding. Changes in patterns of solids and nutrients were also associated with flooding. Complex patterns in phosphorus and nitrogen emerged as a result of utilization by autotrophs (measured as chlorophyll) and seasonal changes. Artificial flooding in a shallow floodplain water body stabilized and improved water quality for aquatic biota and is a viable method for habitat rehabilitation in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi‐species hierarchical models to estimate habitat‐specific abundances and densities of juvenile humpback chub, bluehead sucker Catostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Larval and juvenile Colorado pikeminnow (Ptychocheilus lucius) use shallow, low‐velocity, channel‐margin areas (backwaters) as nursery habitats. It is hypothesized that within‐day flow fluctuations caused by hydropower operations can directly affect the suitability of such habitats by altering water temperature and habitat geometry. Despite the importance of backwaters to juvenile fishes, there is a lack of established approaches for modelling how river management affects these habitats. Here, we describe a physical habitat model that predicts the effects of mainstem flow variation on backwater temperature, geometry and invertebrate availability. We specifically modelled these effects on habitat in a portion of the Green River in Utah below Flaming Gorge Dam. The overall model combines a cell‐based model of backwater geometry, a pond‐based temperature model and a model of invertebrate production. Results from a series of simulations suggest that the most important biological effects of within‐day flow fluctuations are likely to be those associated with the availability of invertebrate prey including (1) minimum wetted area, (2) the proportion of the backwater's volume exchanged with the mainstem, and, to a lesser degree, (3) backwater temperature. Taken together, such effects could have important implications for the growth and survival of juvenile fish when flow fluctuations are sufficiently large. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Bigheaded carp (Hypophthalmichthys spp.) occur throughout much of the Mississippi Basin, USA. Efforts to control the spread of these invasive species require information on their spatial ecology, though sampling is hindered by their broad extent, habitat tolerances, and species‐specific behaviour. Mobile hydroacoustics was used to quantify habitat and depth use of bigheaded carp over four years in the heavily invaded Lower Illinois River, a major Mississippi tributary and potential dispersal pathway to the Great Lakes. Horizontally oriented transducers (combined with capture gear for species designation) enabled sampling of the main habitat features in this large flood plain river. Silver carp (Hypophthalmichthys molitrix) were dominant over bighead carp (Hypophthalmichthys nobilis) at all but one site, although habitat use was similar for both species. Densities were highest in lotic backwaters, followed by lentic backwaters and nearshore main channel, with lowest densities in the mid main channel. Bigheaded carp size and species composition were independent of habitat type. Depth associations were similar for both species, with average occurrence at 2.5–3.5 m in the main channel and 1–2 m in backwaters. However, depth relative to the river bed was largely similar across habitat types. Bigheaded carp density and depth use in the main channel were linked non‐linearly to river discharge and water temperature, respectively; densities were reduced during high discharge, whereas depth use became shallower at higher temperatures. Density–hydrology trends were less apparent in backwaters. These findings highlight critical aspects of bigheaded carp spatial ecology that will facilitate effective management in invaded and at‐risk ecosystems.  相似文献   

11.
Nitrate uptake may be improved in regulated floodplain rivers by increasing hydrological connectivity to backwaters. We examined summer nitrate uptake in a series of morphologically similar backwaters on the Upper Mississippi River receiving flow‐regulated nitrate loads via gated culverts. Flows into individual backwaters were held constant over a summer period but varied in the summers of 2003 and 2004 to provide a range of hydraulic loads and residence times (τ). The objectives were to determine optimum loading and τ for maximum summer uptake. Higher flow adjustment led to increased loading but lower τ and contact time for uptake. For highest flows, τ was less than 1 day resulting in lower uptake rates (Unet < 300 mg m?2 day?1), low uptake efficiency (U% < 20%) and a long uptake length (Snet > 4000 m). For low flows, τ was greater than 5 days and U% approached 100%, but Unet was 200 mg m?2 day?1. Snet was < half the length of the backwaters under these conditions indicating that most of the load was assimilated in the upper reaches, leading to limited delivery to lower portions. Unet was maximal (384–629 mg m?2 day?1) for intermediate flows and τ ranging between 1 and 1.5 days. Longer Snet (2000–4000 m) and lower U% (20–40%) reflected limitation of uptake in upper reaches by contact time, leading to transport to lower reaches for additional uptake. Uptake by ~10 000 ha of reconnected backwaters along the Upper Mississippi River (13% of the total backwater surface area) at a Unet of ~630 mg m?2 day?1 would be the equivalent of ~40% of the summer nitrate load (155 mg day?1) discharged from Lock and Dam 4. These results indicate that backwater nitrate uptake can play an important role in reducing nitrate loading to the Gulf of Mexico. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The Upper Mississippi River is a dynamic floodplain river that has been largely transformed by navigational levees and dams since the 1930s. The pools upstream of each dam are lake‐like and only about the upper third of each reach retains a riverine character. In contrast, the Wisconsin River is not managed for commercial navigation and today its lower 149 km represent one of the least‐degraded large river reaches in central North America. Riverine reaches in both the Mississippi and Wisconsin rivers have similar macro‐habitats including numerous islands, large side channels, and connected backwaters and floodplain lakes. In this study, shoreline electrofishing samples were collected during summer 2002 and 2003 to characterize resident fish assemblages. We compared fish species abundance, biomass, and biotic integrity along main and side channel borders between the Upper Mississippi River and the Lower Wisconsin River. We expected that, in the absence of environmental degradation, fish composition and structure would be similar between the Mississippi and Wisconsin rivers, and between channel types within each river. Nonmetric multidimensional scaling and redundancy analysis revealed that fish species in the Mississippi River, unlike in the Wisconsin River, were characteristic of non‐riverine habitats. We consider non‐riverine fish assemblages indicative of environmental impairment. The main and side channel sites in the Mississippi River had more variable fish assemblages than the Wisconsin River. Analyses of fish index of biotic integrity scores showed that environmental condition was excellent for both channel types in the Wisconsin River, whereas in the Mississippi River the side channel was rated good and the main channel only fair. We conclude that differences between the two rivers and between channel types of the Mississippi River are consistent with direct and indirect effects of navigation. This study demonstrates the utility of a fish index of biotic integrity, an inexpensive and rapid bioassessment tool, for detecting change in ecological health on one of the world's largest rivers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
System-wide spatial patterns of ichthyoplankton abundance and variability were assessed in the upper Mississippi and lower Illinois rivers to address the experimental design and statistical confidence in density estimates. Ichthyoplankton was sampled from June to August 1989 in primary milieus (vegetated and non-vegated backwaters and impounded areas, main channels and main channel borders) in three navigation pools (8, 13 and 26) of the upper Mississippi River and in a downstream reach of the Illinois River. Ichthyoplankton densities varied among stations of similar aquatic landscapes (milieus) more than among subsamples within a station. An analysis of sampling effort indicated that the collection of single samples at many stations in a given milieu type is statistically and economically preferable to the collection of multiple subsamples at fewer stations. Cluster analyses also revealed that stations only generally grouped by their preassigned milieu types. Pilot studies such as this can define station groupings and sources of variation beyond an a priori habitat classification. Thus the minimum intensity of sampling required to achieve a desired statistical confidence can be identified before implementing monitoring efforts.  相似文献   

14.
Harmful algal blooms are occurring in large river ecosystems and at the mouth of large rivers with increasing frequency. In lentic systems, the chemical and physical conditions that promote harmful algal blooms are somewhat predictable but tracking prevalence and conditions that promote harmful algal blooms in lotic systems is much more difficult. We captured two of the most extreme discharge years within the last 20 years occurring in the Upper Mississippi River, allowing a natural experiment that evaluated how major shifts in discharge drive environmental variation and associated shifts in phytoplankton. Statistical models describing significant environmental covariates for phytoplankton assemblages and specific taxa were developed and used to identify management‐relevant numeric breakpoints at which environmental variables may promote the growth of specific phytoplankton and/or cyanobacteria. Our analyses supported that potentially toxin‐producing cyanobacteria dominate under high phosphorus concentration, low nitrogen concentration, low nitrogen‐to‐phosphorus ratio, low turbulence, low flushing, adequate light and warm temperatures. Cyanobacteria dominated in 2009 when low discharge and low flushing likely led to optimal growth environments for Dolichospermum, Aphanizomenon and Microcystis. Rarely will a single factor lead to the dominance, but multiple positive factors working in concert can lead to cyanobacteria proliferation in large rivers. Certain isolated backwaters with high phosphorus, low nitrogen, warm water temperatures and low potential for flushing could benefit from increased connection to channel inputs to reduce cyanobacterial dominance. Numerous examples of this type of habitat currently exist in the Upper Mississippi River and could benefit from reconnection to channel habitats.  相似文献   

15.
Connection between rivers and their floodplain is critical to the function of fluvial systems; however, there has been little research quantitatively examining the dynamics of this interaction for large, alluvial rivers. Critical questions include the following: What are the rates and mechanisms of materials and energy exchange, and in what ways does the exchange impact ecosystem functioning? To address these questions, we built a simple model of a hypothetical reach of the Lower Mississippi River (LMR) containing a single backwater. The model is based on empirical data obtained from the LMR system. Our primary objectives for the model were to assess potential backwater impacts on river nitrate transport and in subsidizing phytoplankton biomass to the main channel. Simulations run over a 10‐year period suggest that on an annual basis, (a) LMR backwaters remove NO3–N, and it would require a temporal mean of 34,400 ha functioning like the model backwater, or 2.8 times the current area of oxbow lakes, to eliminate 100% of the river flux of NO3–N of our study region; (b) it would require inputs of phytoplankton from a mean of 5,242 ha of sites functioning like the model backwater to produce observed river flux of phytoplankton biomass; and (c) backwater function is sensitive to the controlling elevation in linking channels hence subject to management. Although simple, this model is a useful first step in quantifying the significance of river–backwater connectivity on ecological processes of the LMR system.  相似文献   

16.
Large beds of Vallisneria americana declined in the backwaters of the Upper Mississippi River after a drought that occurred between 1987 and 1989. One hypothesis for this decline is that low light availability may have decreased net photosynthesis to the extent that overwintering tubers were not formed. Following the decline, light availability remained low. To determine what light levels would be necessary for the re-establishment of Vallisneria in the Upper Mississippi River, the long-term growth of plants in a backwater lake and in an experimental pond was measured while the surface and subsurface light were monitored continuously. Plants grown from tubers transplanted to 0·5, 1·0 and l·5m depth in the lake grew and produced tubers only at 0·5m depth (9% of surface light). At 1·0 m, light availability was less than 1% of the surface light. Plants grown from tubers in experimental ponds with four shade treatments (2, 5, 9 and 25% of surface light) for the same growing period produced replacement-weight tubers in 9% light. For a longer growing season, plants also produced replacement-weight tubers in treatments with at least 5% of surface light. An average light-extinction coefficient of 4·64 m?1 was calculated for the backwater lake based on continuous data collected during 94 days during the growing season from eight widely separated sites. Using equations based on the average extinction coefficient for the lake and average leaf lengths of plants grown in experimental ponds, we predict that in years with comparable turbidity, plants grown from locally collected tubers will grow and produce replacement tubers only at depths of 0·8 m or less.  相似文献   

17.
The floodplains of lowland rivers contain diverse aquatic habitats that provide valuable ecosystem services but are perturbed when intensively cultivated. Hydrologic, water chemistry and biological (fish) conditions in five aquatic habitats along the Coldwater River, Mississippi, were measured for more than 4 years: the river, two severed meanders that functioned as backwaters, a managed wetland and an ephemeral channel draining cultivated fields. Off‐channel habitats were connected to downstream regions 0.10% to 32% of the dry season and 24% to 67% of the wet season. The median temperatures for the five monitored sites ranged from 18°C to 23°C, the median total solids concentration for all sites was 135 mg L?1, the median total phosphorus was 0.29 mg L?1 and the median total nitrogen was 1.56 mg L?1. Chemical and physical water quality displayed strong seasonal differences between the wet winter/spring and the dry summer/fall periods so that temporal variation consisted of gradual seasonal trends superimposed on strong diurnal variations. All off‐channel habitats exhibited periods of hypoxia and temperatures >30°C during the dry season. Between‐site gradients of water and habitat quality were strongly coupled to water depth and runoff loading. The rehabilitation of one backwater by increasing water depth and diverting agricultural runoff was associated with improved water quality and fish species richness relative to an adjacent untreated backwater. The diversion of polluted runoff and the use of water control structures to maintain greater water depth were observed to be effective management tools, but the former reduces the water supply to habitats that tend to dry up and the latter reduces connectivity. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

18.
The St. John's Bayou water control structure near New Madrid, MO, connects the main Mississippi River to two large backwater areas called the New Madrid Floodway and St. John's Bayou. While this area has been altered, the New Madrid Floodway and St. John's Bayou account for the only substantial portion of the historic Mississippi River floodplain that remains and provides the only critical connection between backwater/floodplain habitat and the river. Fish passage was evaluated during April–December 2010 using ultrasonic telemetry. Stationary receivers were placed strategically at five locations above and below the structure in St. John's Bayou, in the floodway and the outlet to the Mississippi River. A total of 100 individuals representing 14 species were tagged. Total number of detections during an 8‐month period was 1 264 717. Fifteen individuals representing five species moved into the Mississippi and Ohio rivers; seven individuals returned to St. John's Bayou. Thirteen of the 14 species moved upstream through the structure. Of the 85 individuals that stayed in the bayou, 29 fish passed through the structure for a total of 92 passage events. The downstream : upstream passage was roughly 50:50. Passage was correlated with river rise, with frequency of passage being higher in spring, but passage occurred each month during the study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Hydraulic data collected in the 1960s during 92 distinct floods at 35 different bridge sites in the Mississippi River Basin revealed that the water surface profiles of these real‐life cases were distinctly different from those observed in laboratory models of the comprehensive experimental studies of the 1950s by the U.S. Geological Survey (USGS) and by U.S. Bureau of Public Roads (USBPR). The laboratory‐developed methods of USGS and USBPR yielded only about half of the field backwaters when applied to the comprehensive field data. In the current work, using the same field data and accepting a profile like that observed in the field, a new regression‐based formula for estimating bridge backwater is proposed and compared with the methods of USGS and USBPR, which yields more accurate results than these two methods with the advantage of requiring a smaller load of arithmetic operations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Rivers worldwide have experienced changes through habitat modifications and are likely further exacerbated with the onset of climate change. The coupling of these anthropogenic disturbances has reduced the ability of river ecosystems and associated biota to adjust. The aforementioned human‐induced habitat perturbations coupled with high summer river temperatures have been associated with an increased frequency of fish kills. Recently, shovelnose sturgeon Scaphirhynchus platorynchus have experienced numerous events of excessive summer mortality in rivers across the USA. During the summer of 2012, multiple fish kills occurred on the lower Des Moines River. During one of these events, we collected numerous dead or dying shovelnose sturgeon (N = 132) to explore factors causing mortality. Water temperatures were exceedingly high (29–35°C), while dissolved oxygen levels varied between 4 and 10 mg L?1. Based on population simulation modelling, only ~14% mortality would need to occur to reduce the reproductive potential below sustainable levels, which was likely exceeded. The results of our controlled experiment demonstrate that the high temperature in the Des Moines River was likely the mechanism initiating mortality. Future climate projections indicate that increases in temperature on the Des Moines River are possible; thus, the population may be at risk in the future. Through our microchemistry investigation, immigration from the Upper Mississippi River appears to be common and may be a source population to the Des Moines River. Despite immigration, the influence that these mortality events have on the Upper Mississippi River is unknown. Thus, proactive management efforts are needed to ensure sustainability of this population. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号