首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
金光  刘梦云  吴晅  毕文明  赵雪茹 《建筑科学》2020,36(2):51-55,86
以吉林省长春市某太阳能-地源热泵系统为研究对象,监测系统的运行情况、每延米换热量、土壤温度及机组的COP,分析太阳能-地源热泵系统对土壤热失衡的缓解作用。结果显示,在冬季典型月,太阳能系统为土壤进行补热,在地源热泵系统提供所有负荷的工况下,土壤温度基本维持在6℃,每延米的平均换热量约30 W/m,系统运行良好。SGSHP系统可有效减小土壤温度降幅,在-70 m处,SGSHP系统土壤温度降幅仅为地源热泵(GSHP)系统土壤温度降幅的2%;在-100 m处,SGSHP系统土壤温度降幅为GSHP系统的3. 9%。SGSHP系统在严寒地区能够高效运行,能有效缓解土壤热失衡问题。机组的COP平均值约为4. 01。  相似文献   

2.
刘卫  徐博荣  刘鹏  季超然  王丹  马文涓 《建筑技术》2021,52(11):1388-1391
为探究U型地源热泵系统运行过程中土壤温度变化特性,以竖直U型地埋管周围土壤为研究对象,基于有限元分析法建立三维非稳态传热物理模型.研究表明,地埋管周围土壤温度和单位井深换热量均随热泵运行时间增加而增加且趋于稳定;在其他条件不变的情况下双U型地埋管换热量为28.26W/m,单U型地埋管换热量为26.38W/m;流体进口流速和土壤温度梯度对单位井深换热量影响很小;流体进口温度和回填材料对土壤温度和单位井深换热量的影响较大;热泵蓄热-恢复和取热-恢复工况下,土壤温度恢复效果随径向距离及恢复时间增加而增加,土壤导热系数越大恢复的程度越接近土壤初始温度值.  相似文献   

3.
实验并模拟了地埋管换热器持续低温运行对换热及土壤温度分布的影响,实测的运行取热换热量能保持在60~85 W/m,且无明显衰减,满足地源热泵系统取热需求。采用计算流体力学软件对冻结工况进行了模拟,实验数据验证了模型对回水温度、换热量、近壁侧温度模拟的有效性。后续理想条件下的模拟结果从理论上说明了低温供水工况在补热得当情况下可以保证地埋管换热器的较高换热能力,且对土壤温度环境影响可控。  相似文献   

4.
建立了地埋管地源热泵系统运行的数学模型,以某综合楼为例,分析了空调水温、地埋管长度、土壤初始温度、土壤导热系数对系统运行能耗的影响,以及地埋管运行对土壤温度的影响。结果表明:空调冷水温度每提高1℃,制冷耗电量约减小3.5%;空调热水温度每提高1℃,供热耗电量约增加2.3%;地埋管长度每增加10%,制冷耗电量约减小0.43%,供热耗电量约减小0.56%;土壤初始温度每提高1℃,制冷耗电量约增加1.9%,供热耗电量约减小2.4%;土壤导热系数每增加0.1 W/(m·K),制冷耗电量约减小0.22%,供热耗电量约减小0.20%。  相似文献   

5.
热物性参数是地源热泵系统地埋管换热器设计的关键参数。采用自行研制的岩土热物性参数测试仪,于地处夏热冬冷地区的绍兴某山地开展单U和双U测试井现场热响应试验,使用线热源模型对数据进行分析,获得工程所在山地单U测试井的岩土导热系数为2. 27 W/(m·K),钻井热阻为0. 123 (m·K)/W,排热工况下单位延米换热量为86. 39 W/m,双U测试井的岩土导热系数为3. 31 W/(m·K),钻井热阻为0. 119 (m·K)/W,单位延米换热量为106. 72 W/m,为该地区地源热泵系统的设计及施工提供了依据。  相似文献   

6.
本文依托哈尔滨地区某供暖示范工程,对地源热泵冬季动平衡运行状态进行研究,分析土壤温度,单位管长换热量,COP以及进出口温差随运行时间的变化趋势。实验结果表明:地埋管周围土壤温度虽然呈现不同程度的波动情况,但在一周内土壤温度共下降了0.72℃,下降率为0.1℃/d。单位管长换热量呈现先下降后上升再下降的变化趋势,下降速率为0.20 W/(m·d)。运行过程中机组COP和系统COP都出现了不同程度的波动且呈现下降趋势,机组COP和系统COP平均每天下降速率分别为0.048、0.023。循环流体进出口温度以及温差的下降量分别为0.35℃、0.56℃、0.14℃。为使地源热泵系统能够持续高效运行,可采取地源热泵-太阳能联合或者地源热泵-锅炉联合运行的方式进行供暖。  相似文献   

7.
以深度为60 m的镀锌钢管套管式地埋管换热器地源热泵系统和热电阻测温系统为实验平台,对土壤温度、套管式地埋管换热器换热性能及换热器对周围土壤的热影响进行了实验研究。研究表明,南宁市地下5~60 m的土壤温度为23.2~23.7℃;Φ80和Φ65套管式地埋管换热器的合理流量分别为1 500 L/h和1 200 L/h,对应的单位井深换热量分别为107.5W/m和81.4 W/m;不同内管导热系数对套管式地埋管换热器换热性能的影响很小;内进外出流动模式换热器的换热性能优于外进内出模式;间歇运行有利于土壤温度的恢复。  相似文献   

8.
以武汉地区为例,使用TRNSYS软件中PID控制器使镀锌钢管套管式地埋管换热器系统在运行过程中进出水平均温度维持在冬季7.5℃、夏季32.5℃的设定温度,模拟研究钻孔深度、钻孔间距及内管流体流速对套管式埋管换热器换热量的影响。得到钻孔深度从80 m变化至120 m时,换热器的冬季延米平均换热量变化较小;夏季延米平均换热量呈上升趋势,最高可上升6.6%。当钻孔间距从3 m增加至6 m,冬、夏季平均延米换热量分别升高2.5%和1.6%。管内流速从0.03 m/s变化至0.7 m/s时,换热量逐渐上升并趋于平缓。将镀锌钢管套管式换热器与两种常规埋管换热器(单U-PE管和双U-PE管)对比,得到镀锌钢管套管式换热器换热效果最好,其冬季延米平均换热量分别高出常规换热器32.6%和28.5%;夏季延米平均换热量高出常规换热器29.6%和25.7%。  相似文献   

9.
地源热泵地下埋管换热性能及其影响因素研究   总被引:1,自引:0,他引:1  
通过工程实验探索地下埋管换热性能及其影响因素,考察地埋管的不同运行工况对地源热泵能效比的影响,探索影响竖向地埋管换热能力的主要因素,初步给出了地源热泵系统最优的运行工况.实验表明,变流量情况下地下埋管的单位深度换热量平均在30W/m左右,而定流量情况下为27W/m左右.连续工况运行时,地下埋管的单位深度换热量平均在25W/m左右,而间歇工况运行时为35W/m左右.  相似文献   

10.
针对地源热泵长期运行时土壤热失衡导致热泵效率降低的问题,探究地下水渗流(以下简称渗流)以及热泵周期性运行对周围土壤温度场与热泵效率的影响。建立长宽均为40 m,深度为140 m的土壤区域,在土壤区域中打9个120 m深的钻孔,钻孔中心间距为5 m,且按照3×3的方阵排布,在钻孔中埋入深度为120 m的双U型地埋管。基于Feflow数值模拟软件的三维瞬态热渗耦合传热模型,通过土壤热响应实验验证,确定Feflow软件仿真模拟得出的结果准确可靠。在此基础上,分析不存在渗流、存在渗流、改变渗流速度(1×10~(-4)m/s、2. 4×10~(-6)m/s、2. 1×10~(-7)m/s)以及改变渗流层厚度(5 m、10 m、15 m)对地源热泵在供暖工况下120 d连续运行带来的影响,分析地源热泵系统按照1 a中供暖运行120 d,间歇90 d,制冷运行90 d,再间歇60 d的周期性运行模式,运行10 a后对地下土壤温度场以及地埋管单位管长换热量的影响。结果表明:存在渗流且渗流速度大于1×10-7m/s数量级时有利于地埋管周围土壤温度恢复;相对于无渗流条件,渗流层位于38~42 m且渗流速度为2. 4×10~(-6)m/s时,供暖工况下连续运行120 d后的地埋管单位管长换热量提高54%;渗流速度对地埋管单位管长换热量影响明显,渗流速度越大,地埋管单位管长换热量越多;渗流速度不变时,地埋管单位管长换热量随着渗流层厚度的增加而增加,且渗流层厚度每增加5 m,在供暖工况连续运行120 d后,地埋管单位管长换热量增加2 W/m;周期性运行模式下,有渗流与无渗流条件下土壤均没有明显的冷、热量积累,但有渗流条件更利于提高地埋管单位管长换热量。文末附有有渗流与无渗流工况下土壤温度场动态展示的视频,可扫二维码观看。  相似文献   

11.
本文以1栋上海地区独栋住宅为对象,对土壤源热泵系统冬季供暖性能和能效进行了实证研究.通过对系统运行参数的连续监测,实证了地埋管换热器每米埋管取热量、机组与系统的COP及系统节能率等指标.结果表明:地埋管换热器出水温度及循环温差较为稳定,埋管换热量为27 ~ 32 W/m;系统能效受部分负荷率影响较大,整个测试期系统COP在3.3~3.9之间;在满足同等舒适性条件下,土壤源热泵系统比空气源热泵节能31.0%,节能效果明显.  相似文献   

12.
地埋管地源热泵系统冬季运行测试研究   总被引:1,自引:0,他引:1  
对武汉市清江花园小区地源热泵空调系统2007-2008年度冬季的运行情况进行了测试,分析了机组与系统的性能系数、地下土壤温度、地埋管换热量以及机组进出口水温等参数的变化.计算结果表明,在武汉地区(夏热冬冷地区)使用地源热泵系统节能效果显著.  相似文献   

13.
利用TRNSYS软件建立地热响应测试的模型,以单U型地埋管换热器为例,进行了不同埋深、不同流速、季节效应情况下的地埋管换热量及每延米换热量进行模拟。分析在同一土壤类型条件下,不同地热响应测试工况对测试结果的影响。在地源热泵系统设计过程中应充分考虑这些因素,优化系统设计。  相似文献   

14.
地埋管地源热泵土壤温度场实验分析   总被引:2,自引:0,他引:2  
利用地埋管地源热泵实验系统,研究了地埋管地源热泵在冬季供暖和夏季制冷工况下,埋管间距分别为5.65m和4m情况下,地下土壤温度随时间的变化;在夏季制冷工况下,对比了两种埋管间距下,地埋管热干扰现象对热泵机组运行效率的影响;研究了夏季制冷工况下,埋管间距为5.65m时,热泵采取间歇性运行方式下地下土壤温度随时间的变化。结果显示,埋管间距为5.65m时,周围土壤温度变化幅度较小,地埋管换热器换热效果更好,比埋管间距为4m情况下约节能13%;与连续运行方式相比,间歇运行方式下热泵机组的运行效率约提高7%。  相似文献   

15.
建立了地埋管地源热泵热水供应系统实验平台,研究了环境温度、间歇/连续运行工况、管内循环液流速等对地埋管换热器换热能力的影响,并研究了地埋管换热器周围土壤温度场的变化.结果表明,地埋管地源热泵热水供应系统基本不受环境温度的影响;采用间歇运行,有利于提高地埋管换热器的换热能力;地埋管换热器平均单位井深换热量随管内循环液流速的增大而增大,但当流速增大到一定程度时,其增幅趋于平缓.  相似文献   

16.
上海某垂直单U地埋管钻孔换热能力试验研究   总被引:1,自引:0,他引:1  
通过对上海某典型地质钻孔垂直单U地埋管换热能力进行现场试验,得出了夏季散热及冬季取热模式下单孔的换热能力。结果表明,在本测试工况条件下,冬季工况每延米取热量约为夏季工况散热量的65%,冬、夏季钻孔取放热能力明显不平衡。试验结果能为类似地质条件下地源热泵系统的设计及施工提供有益参考。  相似文献   

17.
介绍了地源热泵系统的发展、原理及其应用优势,在此基础上进行了相关实验,并对测试结果进行了分析,实验表明系统运行时,不同深度土壤温度不同,且回水管保温后可提高换热量,并且提出了地源热泵应用时应注意的相关问题.  相似文献   

18.
给出竖直地埋管群换热的简化假设及传热模型。以钻孔之间的间距为5 m,埋管深度为100 m,25 m×25 m方形地埋管群布置为例,从第1年夏季开始运行,运行10 a后夏季结束,夏季和冬季分别运行90 d,运行期间机组每天运行24 h,分别模拟冬季单位长度换热量为30 W/m、夏季单位长度换热量为50 W/m时,冷热负荷比分别为1. 5∶1、2. 0∶1、2. 5∶1时,以及不同的管群布置形式(不同的体形系数)条件下,地下温度场的变化。冬季单位长度换热量为30 W/m,夏季单位长度换热量为50 W/m时,地埋管群区域最高温度超过35℃,平均温度约为24℃左右,钻孔处的平均温度约为38℃,高于标准空调工况的冷却水温度范围,影响换热。随着冷热负荷比的增大,地埋管群区域热量累积越多,负荷热不平衡性表现越明显,越不利于地埋管换热。4种布置形式中,体形系数越小,地埋管群区域的温度升高速度和幅度越大,地下热量堆积越严重。  相似文献   

19.
测试了该系统2010—2011年冬季的运行参数,包括机组性能系数、土壤温度、机组进出口水温和地埋管换热量。分析了加热游泳池池水采用地源热泵系统时相对于燃气锅炉的节能性和经济性。测试结果表明上海地区的游泳馆采用地埋管地源热泵系统冬季节能效果显著。  相似文献   

20.
基于实际工程建立了地源热泵空调系统运行过程的岩土体原位观测站,实现系统运行状况和换热过程中岩土体温度变化、水分迁移的实时监测,通过冬季工况运行试验,揭示地源热泵运行过程中土体的热湿迁移效应。研究结果表明:冬季工况下该地源热泵空调系统的机组性能系数COP为3.58,具有良好的制热效果;土壤温度场的变化受地埋管热交换和大气环境变化两个因素的影响,但二者的影响范围及程度有所区别;土壤温度场的变化幅度随着与地埋管距离的增加而递减,竖埋管热作用的影响半径约2.0 m左右,水平埋管热作用的影响半径约1.0 m左右;地埋管热交换对土壤湿度场的影响不显著,但大气降雨引起的地表水入渗和地下水位的变迁对土壤湿度场变化有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号