首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the influence of multi-walled carbon nanotubes (MWCNT) on electrical, thermal and mechanical properties of CNT reinforced isotactic polypropylene (iPP) nanocomposites is studied. The composites were obtained by diluting a masterbatch of 20 wt.% MWCNT with a low viscous iPP, using melt mixing. The morphology of the prepared samples was examined through SEM, Raman and XRD measurements. The effect of MWCNT addition on the thermal transitions of the iPP was investigated by differential scanning calorimetry (DSC) measurements. Significant changes are reported in the crystallization behavior of the matrix on addition of carbon nanotubes: increase of the degree of crystallinity, as well as appearance of a new crystallization peak (owing to trans-crystallinity). Dynamic mechanical analysis (DMA) studies revealed an enhancement of the storage modulus, in the glassy state, up to 86%. Furthermore, broadband dielectric relaxation spectroscopy (DRS) was employed to study the electrical and dielectric properties of the nanocomposites. The electrical percolation threshold was calculated 0.6–0.7 vol.% MWCNT from both dc conductivity and dielectric constant values. This value is lower than previous mentioned ones in literature in similar systems. In conclusion, this works provides a simple and quick way for the preparation of PP/MWCNT nanocomposites with low electrical percolation threshold and significantly enhanced mechanical properties.  相似文献   

2.
The present study demonstrates a novel mixing approach for achieving a good dispersion of carbon nanotubes (CNTs) in a styrene-butadiene rubber (SBR), which leads to a significant improvement in electrical properties. Our mixing technique consists of (1) pretreatment by ultrasonication to disentangle the bundles of CNTs in organic solvent and (2) “rotation-revolution” mixing of the CNTs with SBR without mechanical shear, which prevents CNTs from collapsing during the mixing process. The present mixing method does not require the addition of any dispersing agents (amphiphilic molecules) or chemical modification of the CNTs to obtain a good dispersion. Compared with a conventional Banbury mixing technique, our method leads to a significant decrease in the percolation threshold (less than 1 phr), where the electrical conductivity suddenly increases due to the formation of percolation networks of CNTs in SBR. This is because the aspect ratio of the CNTs was maintained even after the mixing process, whereas CNTs were broken during the conventional Banbury mixing. The effect of using different types of CNTs on electrical conductivity was also investigated. The results show that the percolation threshold is largely related to the structural quality (graphitization) of the CNTs as well as their aspect ratio.  相似文献   

3.
This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impedance spectroscopy and DC conductivity measurements. The conductivity of the cured nanocomposite follows a statistical percolation model, with percolation threshold at 0.026 wt.% loading of nanotubes. The results obtained show that unsaturated polyesters are a matrix suitable for the preparation of electrically conductive thermosetting nanocomposites at low nanotube concentrations. The effect of carbon nanotubes reaggregation on the electrical properties of the spatial structure generated is discussed.  相似文献   

4.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

5.
A comparative study of the use of multiwall carbon nanotubes and two different carbon nanofibers in an unsaturated polyester, forming nanocomposites, and their effect on dispersion and the electrical and mechanical properties is presented. The nanocomposites were prepared by shear mixing without the use of any solvent. The degree of dispersion was evaluated from both a micro and nanoscale point of view in order to better understand the role of the filaments on the resulting electrical and mechanical properties. The results obtained show that the dispersion depends, in addition to the high shear conditions, on the structure and nature of the nanofilaments. The best dispersion attained, showing the lowest percolation threshold, did not correspond to the most energetic mixing conditions. However, it was imperative to effectively disperse the nanofilaments into the matrix in order not to deteriorate the mechanical properties of the composites. Moreover, it seemed that lower nanofilament concentrations allowed for better dispersion, and as a result, higher mechanical performance.  相似文献   

6.
Epoxy nanocomposite suspensions including multi-wall carbon nanotubes (MWCNTs) and carbon black (CB) were produced and investigated by means of combined rheological and electrical analysis. The rheological percolation behaviour was compared to the electrical percolation behaviour. Due to similar dynamic agglomeration mechanisms the difference between the rheological and the electrical percolation threshold in the cured state is identical for MWCNT and CB filled systems. Non-covalent matrix–nanoparticle interactions in uncured epoxy suspensions are negligible since the onset of electrical and rheological percolation in the uncured state coincidence. Furthermore, the electrical percolation threshold in the cured state is always lower than in the uncured state because of the high tendency of CB and MWCNTs to form conductive networks during curing. The difference between rheological and electrical percolation threshold is dependent on the curing conditions. Thus, the rheological percolation threshold can be considered as an upper limit for the electrical percolation threshold in the cured state. Due to the formation of co-supporting networks multi-filler (MWCNTs and CB) suspensions exhibit a similar rheological behaviour as the binary MWCNT suspensions. For both types of suspensions a rheological percolation threshold of around 0.2 and 0.25 wt% was determined. Conversely, the binary CB nanocomposites exhibit a four-times higher percolation threshold of about 0.8 wt%. The difference between the binary MWCNT suspension and the ternary CB/MWCNT suspension in storage shear modulus at high filler concentrations (~0.8 wt%) turns out to be less than expected. Thus, synergistic effects in network formation are already present in the epoxy suspension and get more pronounced during curing.  相似文献   

7.
Hybrid filler systems of multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) were incorporated into two types of polyamide 12 (PA12) using small-scale melt mixing in order to identify potential synergistic effects on the interaction of these two electrical conductive fillers. Although no synergistic effects were observed regarding the electrical percolation threshold, at loadings well above the percolation threshold higher volume conductivities were obtained for samples containing both, MWCNT and CB, as compared to single fillers. This effect was more pronounced when using a higher viscous PA12 matrix. The formation of a co-supporting network can be assumed. The combined use of CB and MWCNTs improved the macrodispersion of MWCNT agglomerates, which can be assigned as a synergistic effect. DSC measurements indicated an effect of the nanofiller on crystallisation temperatures of PA12; however this was independent of the kind or amount of the carbon nanofiller.  相似文献   

8.
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.  相似文献   

9.
Considerable experimental work on carbon nanotube-reinforced composites has shown that the reinforcement efficiency of carbon nanotubes (CNTs) becomes lower than the theoretical expectation when CNT content reaches a critical value. This critical volume fraction (percolation threshold) is considered related to the formation of percolating network. In this work, a percolation model is proposed to describe the observed sharp decrease in the reinforcement efficiency of multiwalled CNTs (MWCNTs) dispersed in thermoplastics when the CNT content exceeds the percolation threshold. The percolation threshold is estimated via a numerical simulation of randomly curved CNTs according to the statistics on geometrical features of real CNTs. The percolation model, integrated into the Halpin–Tsai equations, is verified using the experimental data of various thermoplastic composites reinforced with MWCNTs. The developed mechanical model achieves a good agreement with the measured moduli of nanocomposites, and demonstrates an excellent prediction capability over a wide range of CNT content.  相似文献   

10.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

11.
Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the nanoparticles, electrical percolation behaviour was studied. Due to synergistic effects in network formation and in charge transport the inclusion of both MWCNT and CB in the epoxy matrix leads to an identical electrical behaviour of this ternary nanocomposite system compared to the binary MWCNT-epoxy system. For both types of nanocomposites an electrical percolation threshold of around 0.025 wt% and 0.03 wt% was observed. Conversely, the binary CB nanocomposites exhibit a three-times higher percolation threshold of about 0.085 wt%. The difference between the binary MWCNT-epoxy and the ternary CB/MWCNT-epoxy in electrical conductivity at high filler concentrations (e.g. 0.5 wt%) turns out to be less than expected. Thus, a considerable amount of MWCNTs can be replaced by CB without changing the electrical properties.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs)-filled polycarbonate (PC), poly(vinylidene fluoride) (PVDF) and PC/PVDF conductive composites were fabricated using melt mixing, respectively. The dynamic process of MWCNTs conductive network formation in the composites was in situ traced by recording the variation of electrical resistivity with time during annealing treatments. As a result, the percolation threshold for the MWCNTs-filled PC/PVDF system was much lower than those of MWCNTs-filled individual polymers and the MWCNTs were selectively located in the PC phase of PC/PVDF composite, which had been verified by scanning electron microscopy measurements. The activation energy of conductive network formation for PC/PVDF/MWCNTs composite was close to that of the PC/MWCNTs system, which further confirmed that MWCNTs were dispersed mainly in the PC phase. Furthermore, the assembly velocity of MWCNTs in the polymer melt increased with annealing temperature.  相似文献   

13.
Ultra-high molecular weight polyethylene (UHMWPE)-based conductive nanocomposites with reduced percolation and tunable piezoresistive behavior were prepared via solution mixing followed by compression molding using carbon nanotubes (CNT) and graphene nanoplatelets (GNP). The effect of varying wt% of GNP with fixed CNT content (0.1 wt%) on the mechanical, electrical, thermal and piezoresistive properties of UHMWPE nanocomposites was evaluated. The combination of CNT and GNP enhanced the dispersion in UHMWPE matrix and lowered the probability of CNT aggregation as GNP acted as a spacer to separate the entanglement of CNT with each other. This has allowed the formation of an effective conductive path between GNP and CNT in UHMWPE matrix. The thermal conductivity, degree of crystallinity and degradation temperature of the nanocomposites increased with increasing GNP content. The elastic modulus and yield strength of the nanocomposites were improved by 37% and 33%, respectively, for 0.1/0.3 wt% of CNT/GNP compared to neat UHMWPE. The electrical conductivity was measured using four-probe method, and the lowest electrical percolation threshold was achieved at 0.1/0.1 wt% of CNT/GNP forming a nearly two-dimensional conductive network (critical value, t = 1.20). Such improvements in mechanical and electrical properties are attributed to the synergistic effect of the two-dimensional GNP and one-dimensional CNT which limits aggregation of CNTs enabling a more efficient conductive network at low wt% of fillers. These hybrid nanocomposites exhibited strong piezoresistive response with sensitivity factor of 6.2, 15.93 and 557.44 in the linear elastic, inelastic I and inelastic II regimes, respectively, for 0.1/0.5 wt% of CNT/GNP. This study demonstrates the fabrication method and the self-sensing performance of CNT/GNP/UHMWPE nanocomposites with improved properties useful for orthopedic implants.  相似文献   

14.
通过共溶剂法制备了由石墨(GN)和多壁碳纳米管(MWCNTs)掺杂的聚乳酸(PLA)纳米复合材料,借助扫描电镜等手段,研究了MWCNTs用量对复合材料微观结构、热稳定性、导热和导热性能及介电性能的影响。结果显示,MWC-NTs和GN在PLA基体中形成了稳定的导电和导热网络结构,从而导致复合材料具有较低的导电和导热逾渗阈值,其值约为MWCNTs/GN=0.5/1。MWCNTs和GN均匀分散和协同增强效应促使复合材料热稳定性、导热和导电性能明显提高。与纯PLA相比,填料在逾渗阈值附近的复合材料的初始分解温度提高了近16℃,导热系数提高了1倍,体积电阻降低了109数量级。  相似文献   

15.
The electrical percolation behaviour of five different kinds of carbon nanotubes (CNTs) synthesised by two CVD techniques was investigated on melt mixed composites based on an insulating polyamide 6.6 matrix. The electrical percolation behaviour was found to be strongly dependent on the properties of CNTs which varied with the synthesis conditions. The lowest electrical percolation threshold (0.04 wt.%) was determined for as grown multi-walled carbon nanotubes without any purification or chemical treatment. Such carbon nanotubes were synthesised by the aerosol method using acetonitrile as ferrocene containing solvent and show relatively low oxygen content near the surface, high aspect ratio, and good dispersability. Similar properties could be found for nanotubes produced by the aerosol method using cyclohexane, whereas CNTs produced by the fixed bed method using different iron contents in the catalyst material showed much higher electrical percolation thresholds between 0.35 and 1.02 wt.%.  相似文献   

16.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

17.
Advanced elastomer nano-composites based on CNT-hybrid filler systems   总被引:1,自引:0,他引:1  
Different techniques to disperse multiwalled carbon nanotubes (CNT) in elastomers using an internal mixer are applied and physical properties of the composites are evaluated: stress–strain behavior, dynamic-mechanical, thermal diffusivity, dielectric and fracture mechanical properties. The electrical percolation threshold is found to decrease by using ethanol as dispersion agent, compared to “dry” mixing, correlating with improved optical dispersion. The effect of nanoscopic gaps between adjacent CNTs on the electrical and thermal conductivity of the composites and the missing percolation behavior of the thermal conductivity are discussed. We have found some technically promising synergetic effects of the hybrid filler systems. For all systems one observes significantly steeper stress–strain curves by addition of 1.6 vol.% CNT to the systems with conventional fillers. In natural rubber the fatigue crack propagation resistance, tensile strength and electrical conductivity is found to be improved also for dry mixed CNT-silica hybrid systems.  相似文献   

18.
The in-situ bulk polycondensation process in combination with a ball milling dispersion process was used to prepare the water blown multiwall carbon nanotubes (CNT)/polyurethane (PU) composite foam. The mechanical properties, piezoresistive properties, strain sensitivity, stress and resistance relaxation behaviors of the composite foams were investigated. The results show that the CNT/PU composite foam has a better compression strength than the unfilled polyurethane foams and a negative pressure coefficient behavior under uniaxial compression. The resistance response of CNT/PU nanocomposites foam under cyclic compressive loading was quite stable. The nanocomposite foam containing a weight fraction of carbon nanotubes close to the percolation threshold presents the largest strain sensitivity for the resistance. The characteristic of resistance relaxation of CNT/PU composite foam is different from the stress relaxation due to the different relaxation mechanism. During compressive stress relaxation, the CNT/PU foam composites have excellent resistance recoverability while poor stress recoverability.  相似文献   

19.
Multi-walled carbon nanotube (MWCNT)-filled silicone rubber (SR) composites were prepared by solvent evaporation method, with different MWCNT concentrations from 0.5 wt% to 6.5 wt%. Alternating current (AC) electrical properties of samples with interdigital electrodes were measured in the frequency range from 20 Hz to 1 MHz. Impedance spectroscopy analysis reveals a frequency-independent percolation transition between 2.0 wt% and 2.9 wt%. Samples above the percolation threshold exhibit more regular variations: the magnitude of impedance decreases gradually with frequency in the low-frequency range, and then decreases as a power law beyond a critical frequency, with the exponent in a limited range indicating the AC universality of disordered solids; the plots of real and imaginary parts of impedance fit semicircles well in the complex plane, implying semiconductive behaviours. Over the concentration range tested, a multi-stage circuit model consisting of resistor–capacitor (RC) networks is proposed to simulate the electrical responses of samples. The validity of the modelling approach is verified by comparing simulation results to experimental results, and is further supported by the analysis of the characteristic frequency. The use of equivalent circuits in modelling provides a further insight into the conducting network inside nanocomposites and more valuable guidance for the design of correlative devices.  相似文献   

20.
Vinyl ester resins are often utilized in advanced naval composite structures due to the relatively low viscosity of the resin and the capability to cure at ambient temperatures. These qualities facilitate the production of large naval composite structures using resin infusion techniques. Vinyl ester monomer was synthesized from the epoxy resin to overcome processing challenges associated with volatility of the styrene monomer in vinyl ester resin. In this research we have investigated the use of a calendering approach for dispersion of multi-walled carbon nanotubes in vinyl ester monomer, and the subsequent processing of nanotube/vinyl ester composites. The high aspect ratios of the carbon nanotubes were preserved during processing and enabled the formation of a conductive percolating network at low nanotube concentrations. An electrical percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. Formation of percolating carbon nanotube networks at low concentration holds promise for the utilization of carbon nanotubes as in situ sensors for detecting deformation and damage in advanced naval composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号