首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
药芯焊丝明弧堆焊Fe-Cr-C-B合金组织及耐磨性   总被引:1,自引:0,他引:1  
为了提高堆焊合金的耐磨性,利用明弧堆焊方法将自保护耐磨堆焊药芯焊丝熔覆在Q235基体金属表面,制备得到Fe-Cr-C-B耐磨堆焊合金.采用金相显微镜、扫描电子显微镜、X射线衍射仪、硬度计和磨料磨损试验机对堆焊层的组织、硬度和耐磨性进行了分析.结果表明,堆焊层主要由马氏体、少量残余奥氏体、M3(C,B)、M23(C,B)6和M7(C,B)3相组成.随着B质量分数的增大,基体组织转变为马氏体,共晶硬质相增多,并呈连续网状分布在基体组织周围.当B的质量分数为3%时,堆焊层的耐磨性达到最佳,其硬度为61. 5 HRC,磨损量为0. 362 9 g.  相似文献   

3.
TiC增强铁基堆焊层组织与性能的研究   总被引:1,自引:0,他引:1  
采用廉价的钛铁、金红石和石墨等原材料,通过焊接电弧冶金反应,合成TiC超硬质颗粒增强Fe基熔敷层.利用扫描电镜、X射线衍射、耐磨性试验分析了熔敷层的组织与耐磨性能.研究结果表明:TiC颗粒弥散分布在低碳马氏体与残余奥氏体基体上.熔敷层硬度HRC55以上,具有很高的耐磨性和良好的抗裂性.原材料的加入量对堆焊层组织与性能影响很大,当钛铁及石墨加入量(%)分别为25~30和8~10时,熔敷层具有良好的综合性能。  相似文献   

4.
TiC增强铁基堆焊层组织与性能的研究   总被引:3,自引:1,他引:3  
采用廉价的钛铁、金红石和石墨等原材料 ,通过焊接电弧冶金反应 ,合成TiC超硬质颗粒增强Fe基熔敷层 .利用扫描电镜、X射线衍射、耐磨性试验分析了熔敷层的组织与耐磨性能 .研究结果表明 :TiC颗粒弥散分布在低碳马氏体与残余奥氏体基体上 .熔敷层硬度HRC5 5以上 ,具有很高的耐磨性和良好的抗裂性 .原材料的加入量对堆焊层组织与性能影响很大 ,当钛铁及石墨加入量 (% )分别为 2 5~ 30和 8~ 10时 ,熔敷层具有良好的综合性能 .  相似文献   

5.
采用优化设计的方法设计了阀门密封面高温耐磨堆焊合金,可满足工作温度600℃以下高温,高压阀门的使用要求,并且其高温硬度的稳定性好于钴铬钨堆焊合金。  相似文献   

6.
对选用的两种不同热轧辊堆焊材料,进行了表面堆焊试验,测定了不同热处理后堆焊层的硬度,耐磨性及化学成份,并进行了金相,扫描电镜的组织观察和分析,为准确选择热轧辊的堆焊材料和工艺提供依据。  相似文献   

7.
为了研究原位自生TiC颗粒对堆焊层组织与性能的影响,采用药芯焊丝明弧堆焊方法在Q235钢表面制备了Fe-Cr-Ti-C堆焊合金.利用X射线衍射仪、扫描电子显微镜、洛氏硬度计和湿砂磨损试验机对堆焊合金进行了分析.结果表明,加入的Ti元素可在堆焊层中原位生成TiC硬质相颗粒,并促进M7C3硬质相的生成,从而起到细化晶粒的作用.当生成的TiC和M7C3硬质相数量较多且弥散分布于金属基体中时,这些硬质相可起到相应的抗磨骨架作用,从而提高了堆焊金属的耐磨性.当药芯焊丝中Ti元素的质量分数为7%时,堆焊层性能最佳,其硬度值为61.6HRC,磨损量为0.3904g.  相似文献   

8.
为了提高在严峻工况条件下工作的机械零件的耐磨性,采用等离子熔覆技术,在20g钢表面制备了一系列Fe-15Cr-x-V-0.8C堆焊合金.借助光学显微镜、扫描电镜和x-射线衍射等分析手段研究了合金组织和碳化物形貌.结果表明:堆焊合金显微组织由马氏体、铁素体、少量奥氏体、M7C3和VC组成.合金中加入一定数量的V,可诱发基体的马氏体转变,改善合金的耐磨性.随着V的质量分数的增加,VC的数量增加,堆焊合金晶粒显著细化.此外,考察了V的质量分数对堆焊合金硬度及耐磨性的影响.耐磨粒磨损实验结果表明:堆焊合金耐磨性优良,当合金中存在较多数量的硬质相且硬质相分布均匀、晶粒大小适中时,能有效阻止磨粒的显微切削运动,显著提高材料的耐磨性.  相似文献   

9.
对加入Cr3C2的药芯焊丝制备的Cr3C2增强型堆焊合金组织和性能进行了分析。添加Cr3C2的自保护药芯焊丝堆焊工艺性能良好,堆焊表面少飞溅,无裂纹气孔。通过对比实验研究发现,加入Cr3C2的药芯焊丝制备的Cr3C2增强型堆焊合金组织细小,高温冲击韧性明显优于WC颗粒增强型药芯焊丝,合金组织中既有颗粒增强型药芯焊丝堆焊产生的颗粒增强相,又有高铬铸铁型药芯焊丝堆焊产生的高硬度初生碳化物,双重强化机制使堆焊层显微硬度达到含Nb高铬铸铁堆焊层的水平,平均硬度60 HRC以上。  相似文献   

10.
为了提高焊缝的力学性能,在低碳钢表面堆焊Fe5合金粉末时,外加纵向间歇交变磁场,研究分析了纵向间歇交变磁场对等离子弧堆焊层金属组织及性能的影响,利用光学金相、x 射线衍射、显微硬度和湿砂橡胶轮磨损试验等检测方法,对不同磁场参数下的等离子弧堆焊试样的硬度、耐磨性及其组织和性能进行了测试分析.分析研究发现,在适当的磁场参数作用下,增加堆焊层金属中硬质相的数量,并控制硬质相的生长方向,可提高等离子弧堆焊层的硬度和耐磨性.结果表明,外加磁场可以改善堆焊层金属的结晶形态,细化晶粒.  相似文献   

11.
K118型合金粉块堆焊层的耐磨性   总被引:1,自引:0,他引:1  
本文讨论了新型Fe-Cr-Ti-B-C系合金粉块碳弧堆焊层显微组织与耐磨性之间的关系,以及堆焊参数对先析硬质相的影响。  相似文献   

12.
利用电子探针、磨损试验机等试验手段,研究了微量元素对特殊黄铜的组织和耐磨性能的影响.结果表明,微量元素的加入可以提高α相的数量,促使耐磨质点Mn3Si3的形成,调整α相及Mn5Si3质点的形态、分布、大小,在摩擦磨损过程中这些变化有利于阻止裂纹形核和扩展,同时微量元素的加入可以在磨损区的表层形成致密的氧化物或微量元素的化合物,减轻粘着磨损,从而提高材料的耐磨性.  相似文献   

13.
分别采用滑动磨损和冲击磨料磨损试验,对比研究南钢NR400高强度耐磨钢板和进口SW400,JA400耐磨钢板的显微组织及耐磨性,分析磨痕形貌,探讨其磨损机制。结果表明,NR400耐磨钢板的组织由贝氏体和少量残余奥氏体组成,具有良好的强韧性及耐磨性。SW400和JA400耐磨板的组织主要为回火马氏体,基本元残余奥氏体存在。NR400耐磨钢板的耐磨性优于进口耐磨钢板。  相似文献   

14.
原位合成TiC/Fe基复合材料的组织结构和磨损性能   总被引:3,自引:0,他引:3  
利用粉末冶金技术,在真空状态下使Fe-Ti-C体系进行碳化反应原位合成TiC/Fe基复合材料,用扫描电镜(SEM)、X射线衍射(XRD)分析复合材料的组织结构和相组成,用热分析法和高温X射线衍射研究Fe-Ti-C体系原位合成的反应机理,用MM-200磨损试验机对复合材料进行耐磨性实验.研究结果表明,反应合成的复合材料主要相组成为TiC、α-Fe和Fe3C,所合成的硬质相TiC颗粒细小,在铁基体中均匀分布.三元体系Fe-Ti-C的反应机理为,首先在765.6 ℃发生Fe的同素异构转变,即α-Feγ-Fe;其次在1078.4 ℃,Ti与Fe共熔而形成低共熔体Fe2Ti;最后在1138.2 ℃,C与Fe2Ti反应生成TiC.在重载干滑动磨损条件下此复合材料显示了很好的耐磨性能.  相似文献   

15.
用7kW横流C02激光器在ZL101铝合金表面激光熔覆高硅涂层。探索不同激光功率熔覆对涂层质量的影响,分析涂层的微观组织,测试涂层的硬度和磨损性能。结果表明:在优化工艺参数下制备出的激光熔覆高硅涂层组织致密、无气孔和裂纹,激光熔覆层中存在大量初晶Si、α-Al树枝晶和共晶组织。涂层与基体结合区处呈现典型的外延生长特征,形成了良好的冶金结合。熔覆层的横截面硬度在HV150~320之间,是基体的2~3倍,并显著提高了基体的耐磨性能。  相似文献   

16.
采用MIG熔化注射方法在低碳钢基体上制备WC颗粒增强耐磨层,利用扫描电镜对耐磨层进行组织分析,并测试耐磨层的硬度和耐磨性能。结果表明,耐磨层成形良好,WC颗粒在耐磨层中分布较均匀,无沉底现象,和胎体金属结合良好,最外层有少量熔化分解。紧邻WC颗粒析出有Fe3W3C和/或Co3W3C,稍远处为鱼骨状共晶组织。胎体金属为马氏体组织,WC型碳化物沿晶界呈网状析出。多道熔化注射没有明显增大WC熔化分解程度。耐磨层中WC颗粒硬度没有降低,胎体金属硬度为Hv700左右,耐磨层的耐磨性约为基体的850倍.  相似文献   

17.
研究了三维连续网状多孔陶瓷复合材料在干摩擦条件下的滑动磨损行为,结果表明:复合材料的耐磨性优于基体合金;复合材料对磨环的磨损量大于基体合金对磨环的磨损量,但复合材料摩擦副的总磨损量比基体合金摩擦副小。  相似文献   

18.
以国产氧化铝短纤维作为增强体,制备了氧化铝短纤维增强铝合金复合材料。本文研究了这种材料的耐磨性能,研究结果表明,氧化铝短纤维具有增强作用,复合材料比基体有高得多的硬度;在润滑条件下,复合材料的磨损率比基体的低,在较大载荷作用下,复合材料表现了优良的抗粘着磨损的能力,在一般磨损情况下,纤维体积率小于15%,可保证复合材料有足够的耐磨性。  相似文献   

19.
激光熔覆Fe+B4C复合涂层的组织及耐磨性   总被引:1,自引:0,他引:1  
利用激光器在SPHC钢基材表面激光熔覆w(B4C)=5%的Fe基复合涂层(Fe B4C),对熔覆层的组织形貌及耐磨性进行分析,并与铁基合金涂层(Fe55)作对比研究.结果表明,Fe55熔覆层主要为有明显方向性的柱状枝晶组织,由α-Fe枝晶固溶体与枝晶间共晶组织(α-Fe Cr23C6)组成;加入B4C后,改变了铁基熔覆层的凝固特征,Fe B4C熔覆层主要由组织均匀、无明显生长方向性的α-Fe杆状枝晶固溶体与其间的共晶组织组成,共晶化合物相明显增多,主要有Fe2B,CrB,Cr23C6,Cr7C3,Fe3(B,C)等.Fe B4C复合涂层的硬度及耐磨性比Fe55涂层明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号