首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the relative Co and Mn content on the electrochemical performance of La0.7Mg0.3Ni2(Co+Mn) hydrogen storage alloys were investigated. The crystal structure, discharge capacity and cycle life of the alloys were evaluated. For all alloys, we found that the higher the Co content, the larger is discharge capacity. The appropriate amount of Mn in La0.7Mg0.3Ni2(Co+Mn) alloys can extend the cycle life of the hydrogen storage alloys although the alloys have less discharge capacity than those with higher Co content. In addition, the LaNi3.87Mn1.13 phase appears and the LaNi5 phase disappears with replacement of Co by Mn.  相似文献   

2.
Polycrystalline hydrogen storage alloys based on lanthanum (La) are commercially used as negative electrode materials for the nickel–metal hydride (Ni–MHx) batteries. In this paper, mechanical alloying (MA) was used to synthesize nanocrystalline LaNi4−xMn0.75Al0.25Cox (x=0, 0.25, 0.5, 0.75 and 1.0) hydrogen storage materials. XRD analysis showed that, after 30 h milling, the starting mixture of the elements decomposed into an amorphous phase. Following the annealing in high purity argon at 700 °C for 0.5 h, XRD confirmed the formation of the CaCu5-type structures with a crystallite sizes of about 25 nm. The nanocrystalline materials were used as negative electrodes for a Ni–MHx battery. Cobalt substituting nickel in LaNi4Mn0.75Al0.25 greatly improved the discharge capacity and cycle life of the LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacities up to 258 mA h g−1 (at 40 mA g−1 discharge current) were measured. Mechanical alloying is a suitable procedure to obtain LaNi5-type alloy powders for electrochemical energy storage.  相似文献   

3.
The single phase nature of the alloys LaNi4.9In0.1, LaNi4.8In0.2, NdNi4.9In0.1, NdNi4.8In0.2 of the systems LaNi5−xInx and NdNi5−xInx was confirmed by means of X-ray powder diffractometry. Nonstoichiometric alloys LaNi4.8 and NdNi4.8 were prepared and were also found to be good single phase materials. All these alloys crystallize with the same hexagonal structure of the CaCu5 type (space group P6/mmm) as do their prototypes LaNi5 and NdNi5. In order to determine the interaction with hydrogen the alloys were exposed to hydrogen gas and the pressure composition desorption isotherms were measured. It was found that all alloys react readily and reversibly absorb large amounts of up to 6.54 hydrogen atoms per alloy formula unit. Generally the equilibrium pressure and the hydrogen capacity decrease with the decreasing nickel content. Presence of indium in the alloy acts in favour of these trends. Furthermore, the increasing content of indium in the alloy system drastically alters the slope and the pressure of the plateau observed at higher pressure of the two isotherm plateaux of the NdNi5–hydrogen system. The final result is a merge of both plateaux into a single one for the hydrogen desorption isotherms of NdNi4.8In0.2. However, the isotherms of nonstoichiometric NdNi4.8 still exhibit two separated pressure plateau regions. The thermodynamic parameters of hydride formation, i.e., the entropy change, the enthalpy and the Gibbs free energy of formation have also been extracted for all alloy–hydrogen systems.  相似文献   

4.
The low-Co content La0.80−xNdxMg0.20Ni3.20Co0.20Al0.20 (x = 0.20, 0.30, 0.40, 0.50, 0.60) alloys were prepared by inductive melting and the effect of Nd content on the electrochemical properties was investigated. XRD shows that the alloys consist mainly of LaNi5 phase, La2Ni7 phase and minor LaNi3 phase. The electrochemical P–C–T test shows hydrogen storage capacity increases first and then decreases with increasing x, which is also testified by the electrochemical measurement that the maximum discharge capacity increases from 290 mAh/g (x = 0.20) to 374 mAh/g (x = 0.30), and then decreases to 338 mAh/g (x = 0.60). The electrochemical kinetics test shows exchange current density I0 increases with x increasing from 0.20 to 0.50 followed by a decrease for x = 0.60, and hydrogen diffusion coefficient D increases with increasing x. Accordingly high rate dischargeability increases with a slight decrease at x = 0.60 and the low temperature dischargeability increases with increase in Nd content. When x is 0.50, the alloy exhibits a better cycling stability.  相似文献   

5.
AB5-type intermetallic compounds were prepared by arc-melting in argon atmosphere. The composition of a stoichiometric compound LaNi3.6Al0.4Co0.7Mn0.3 with a hexagonal CaCu5 structure was varied by stoichiometric and nonstoichiometric addition of Ti. With the increase of the Ti y0.05 content in LaNi3.6Al0.4Co0.7Mn0.3Tiy, the hydrogen storage capacity is enhanced, whereas when y=0.1–0.3, it is decreased. The discharge capacity and cyclability are increased considerably by addition of titanium in the range of 0.02–0.1 with a maximum value at about 0.1%. The highest maximum capacity is achieved for a nonstoichiometric addition of 0.05% Ti. The kinetic properties are also additionally improved by the formation of a titanium-rich second phase. This can explain the improvement of the capacity for alloys with low Ti content. The decrease in capacity for high Ti content was also correlated with the amount of the Ti-rich phase. Therefore, the improvement of kinetics are due to the catalytic effect, grain boundary diffusion effect or more pronounced alloy pulverization upon cycling. This study has been aimed to improve the electrode properties of a series of multicomponent LaNi3.6Al0.4Co0.7Mn0.3Tiy (y=0.0, 0.02, 0.05, 0.1, 0.2, 0.3) alloys which have mutual complementary properties. All the prepared alloys have been subjected to analyses by EDS, SEM and XRD. In order to determine the hydrogen storage capacity, the pressure composition isotherms (PCT curves) have been used. The metal hydride electrodes were characterized by galvanostatic cycling test.  相似文献   

6.
In order to improve the cycle stability of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe, Mn and Al, and the electrode alloys La0.7Mg0.3Ni2.55−xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) were prepared by casting and rapid quenching. The effects of the substitution of Fe, Mn and Al for Ni and rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM indicate that element substitution has no influence on the phase compositions of the alloys, but it changes the phase abundances of the alloys. Particularly, the substitution of Al and Mn obviously raises the amount of the LaNi2 phase. The substitution of Al and Fe leads to a significant refinement of the as-quenched alloy's grains. The substitution of Al strongly restrains the formation of an amorphous in the as-quenched alloy, but the substitution of Fe is quite helpful for the formation of an amorphous phase. The effects of the substitution of Fe, Mn and Al on the cycle stabilities of the as-cast and quenched alloys are different. The positive influence of the substitution elements on the cycle stabilities of the as-cast alloys is in proper order Al > Fe > Mn, and for as-quenched alloys, the order is Fe > Al > Mn. Rapid quenching engenders an inappreciable influence on the phase composition, but it markedly enhances the cycle stabilities of the alloys.  相似文献   

7.
The effect of iron substitution on the electrochemical behaviour of LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds (x=0, 0.15, 0.55) has been studied by chronopotentiometry and cyclic voltammetry techniques. The maximum capacity decreases linearly from 308 to 239 mAhg−1 when the iron content increases from 0 to 7.3 wt.% (x=0.55). This decrease can be explained by the corrosion of the alloy in the aqueous KOH electrolyte. In spite of this decrease and of the long time needed for the activation, a good stability of discharge capacity was observed in LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds. The reversibility of the electrochemical redox reaction of LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes has been observed in the alloys least rich in iron. The hydrogen diffusivity in LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes decreases when increasing the iron content. The obtained values of the hydrogen diffusion coefficient DH, varies between 2.1×10−7 and 8.2×10−9 cm2 s−1 depending on the iron content of the electrode.  相似文献   

8.
Rapidly solidified LaNi4.25Al0.75 alloy was prepared by melt spinning and its hydrogen storage properties were examined. The hydrogen storage capacities and the equilibrium pressures of the unannealed melt-spun (UMS) LaNi4.25Al0.75 alloy were found to be nearly identical to those of the annealed induction-melt (AIM) alloy. However, the resistance to pulverization was greatly improved and the hysteresis was markedly decreased for the UMS alloy, while its activation became rather difficult.  相似文献   

9.
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg Ni system A2B7-type electrode alloys,the partial substitution ofM (M =Zr,Pr) for La was performed.The melt spinning technology was used to fabricate the La0.75-xMxMg0.25Ni3.2Co0.2Al0.1 (M =Zr,Pr; x =0,0.1) electrode alloys.The influences of the melt spinning and substituting La with M (M =Zr,Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated.The analysis of XRD,SEM,and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La,Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2.The as-spun (M =Pr) alloy displays an entire nanocrystalline structure,while an amorphous-like structure is detected in the as-spun (M =Zr) alloy,implying that the substitution of Zr for La facilitates the amorphous formation.The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however,the Zr substitution brings on an adverse impact.Meanwhile,the M (M =Zr,Pr) substitution significantly enhances its cycle stability.The melt spinning exerts an evident effect on the electrochemical performances of the alloys,whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate,whereas their cycle stabilities monotonously augment as the spinning rate increases.  相似文献   

10.
The hydrogen storage alloys MmNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0.55 and 0.75) were used as negative electrodes in the Ni-MH accumulators. The chronopotentiommetry and the cyclic voltammetry were applied to characterize the electrochemical properties of these alloys. The obtained results showed that the substitution of the cobalt atoms by iron atoms has a good effect on the life cycle of the electrode. For the MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 compound, the discharge capacity reaches its maximum of 210 mAh/g after 12 cycles and then decreases to 190 mAh/g after 30 charge–discharge cycles. However, for the MmNi3.55Mn0.4Al0.3Fe0.75 compound, the discharge capacity reaches its maximum of 200 mAh/g after 10 cycles and then decreases to 160 mAh/g after 30 cycles.

The diffusion behavior of hydrogen in the negative electrodes made from these alloys was characterized by cyclic voltammetry after few activation cycles. The values of the hydrogen coefficient in MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 and MmNi3.55Mn0.4Al0.3Fe0.75 are, respectively, equal to 2.96 × 10−9 and 4.98 × 10−10 cm2 s−1. However, the values of the charge transfer coefficients are, respectively, equal to 0.33 and 0.3. These results showed that the substitution of cobalt by iron decreases the reversibility and the kinetic of the electrochemical reaction in these alloys.  相似文献   


11.
Magnesium alloys are potentially the best materials for gaseous hydrogen storage. However, their practical use is limited by poor hydrogen absorption and desorption kinetics. This problem can be resolved by mixing Mg alloys with other materials to form composites. We present an investigation of the initial hydriding characteristics, as well as the compositional transformation of composites made of La2Mg17 + LaNi5 mechanically milled in a 2:1 weight ratio. Composites produced with varying durations and intensities of milling were tested. Those milled to the greatest extent proved to have the best initial hydrogen absorption and desorption kinetics. The kinetics of the most heavily milled composite were superior to those of La2Mg17. This composite absorbed 90% of its full hydrogen capacity (3.5 wt.% H2) in less than 1 min at 250°C and desorbed the same quantity of hydrogen in 6 min. Under the same conditions pure La2Mg17 took 2.5 h to absorb and 3 h to desorb 90% of its full hydrogen capacity (4.9 wt.% H2). Scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were used to characterize the mechanically milled powders before and after hydriding. The unhydrided powders consisted of LaNi5 grains surrounded by a fractured LaMg17 matrix. Hydrogen cycling, at temperatures up to 350°C, induced phase changes, segregation, and disintegration of the composites. The resulting fine powder (less than 1 μm) consisted primarily of Mg, Mg2Ni, and La phases.  相似文献   

12.
This study concerns the influence of iron for cobalt substitution on the structural, thermodynamic and electrochemical properties of the hydrides of poly-substituted LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) alloys used as material for negative electrode in Ni-MH batteries. The Fe substitution leads to an increase of the cell parameter, this increase is linear according to the rate of substitution, and a decrease of the equilibrium pressure in agreement with the geometric law. Nevertheless, it is observed that the Fe substitution leads to a deviation from the linear variation between the logarithm of the pressure and the cell volume observed for Co, Mn and Al for Ni substitution. The Fe for Co substitution leads also to a decrease of the solid–gas and electrochemical capacity.  相似文献   

13.
The dependence of the electric field gradients (EFGs) in the Hf-doped LaNi5-hydrogen system, as a function of hydrogen composition ratio (X), has been investigated in the range 0≤X≤5.7 using the Time Differential Perturbed Angular Correlation (TDPAC) technique. The TDPAC spectrum of LaNi5 was fitted with a single EFG, while two EFGs were needed to fit the LaNi5Hx spectra. The first EFG was similar to the one found in metallic LaNi5 and the second one was interpreted as related to those probe atoms located in the basal plane next to hydrogen interstitial sites located in the same plane. The relative fraction of the probe atoms experiencing these EFGs is dependent on the relative occupation of hydrogen in these sites.  相似文献   

14.
The multi-wall carbon nanotubes (MWNTs) were synthesized by chemical vapor deposition (CVD) using LaNi5 alloy particles as catalyst. The effect of 40–60 nm MWNTs treated with different temperature in nitrogen on the electrochemical properties of CNTs–Ni electrode were investigated. Three-electrode system was introduced for testing electrochemical hydrogen storage of the electrode. The CNTs–Ni electrodes were used as the working electrode, which were prepared by mixing MWNTs and Ni powder in a weight ratio of 1:10 (MWNTs:Ni). Ni(OH)2/NiOOH worked as the counter electrode and Hg/HgO as the reference electrode. A 6 mol/L KOH solution acted as the electrolyte. MWNTs treated with different temperature in nitrogen ambient represented a great discrepancy in the electrochemical hydrogen storage capability under the same testing condition. The CNTs–Ni electrodes with 40–60 nm diameter CNTs which were treated in a temperature of 800 °C in nitrogen has the best electrochemical hydrogen storage capacity of 588.1 mAh/g and a corresponding discharging plateau voltage of 1.18 V. From 500 to 800 °C, the higher temperature the MWNTs treated, the better the electrochemical hydrogen storage property of them is. This shows that the temperature of treatment is an important factor that influences electrochemical hydrogen storage performance of MWNTs.  相似文献   

15.
Tritium is an element of considerable interest in the nuclear industry. Since it is radioactive, it needs to be used to be stored in a safe but easily recoverable manner. It is an isotope of H, and hence some of the techniques used for hydrogen storage can be employed, the safest being its storage in the form of a tritide. LaNi5 alloy has priority to be selected as tritium storage and boost material because of its attractive characteristic features. However, LaNi5 alloy's volume expansion ratio is up to 24% after absorbing hydrogen. The stresses induced by deformation lead to alloy's pulverization, which leads to self-compaction and concentration of stresses. In this paper, the relationships of wall stresses of LaNi5 hydrogen storage beds with cycle number of hydrogen absorption–desorption, loading of hydride beds, packing fraction and thickness of the beds’ walls have been studied by using strain gauges. The experimental results indicate that the wall stresses increase with increasing packing fraction and decrease with thickening of the wall. The wall stresses slowly increase, up to a bed loading of about 0.4 hydrogen to metal atomic ratio. Different locations exhibit greatly different levels of maximal strain. The experimental results may play an important role for the understanding of stress accumulation mechanism.  相似文献   

16.
Ti0.32Cr0.43V0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately −36 kJ/mol H2. The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased.  相似文献   

17.
XAFS measurements of the La L3 and Ni K-edges for LaNi5 were done at temperatures of 20, 100, 200 and 293 K. The temperature dependences of the Debye–Waller factors e−2σ2k2 for La and Ni are deduced. The results show that mean square fluctuation in interatomic distance σ2 of La for LaNi5 is fairly large and the Debye temperature ΘD of La changes with temperature. These results indicate that the La atom with large atomic size changes its atomic position easily in LaNi5. The large σ2 value of A (rare earth) elements for AB5 compounds might be correlated to their high capability of the hydrogen absorption and desorption.  相似文献   

18.
The electrochemical behaviour of LaNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0, 0.15, 0.55, 0.75) intermetallic compounds has been studied and presented [C. Khaldi, H. Mathlouthi, J. Lamloumi, A. Percheron-Guégan, Int. J. Hydrogen Energy 29 (2004) 307–311; C. Khaldi, H. Mathlouthi, J. Lamloumi, A. Percheron-Guégan, J. Alloys Compd. 360 (2003) 266–271; C. Khaldi, H. Mathlouthi, J. Lamloumi, A. Percheron-Guégan, J. Alloys Compd. 384 (2004) 249–253]. It has been deduced that the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 compound has interesting electrochemical properties. In this paper we present the electrochemical study of LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 compound properties compared with the parent LaNi3.55Mn0.4Al0.3Co0.75 compound. Several techniques, such as, the chronopotentiometry, the constant potential discharge (CPD), the cyclic voltammetry (CV) and the linear polarization (LP) were applied to characterize these electrochemical properties. The electrochemical discharge capacity of the LaNi3.55Mn0.4Al0.3Co0.75 alloy increases to reach 294 mAh g−1 after few cycles only (five cycles). However, the activation of the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy takes more than 20 cycles to be achieved and the obtained maximum discharge capacity is 194 mAh g−1. The hydrogen diffusion coefficient DH was determined by constant potential discharge and cyclic voltammetry techniques. The obtained values of the LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 compounds are 6.29 × 10−11 and 7.62 × 10−11, and 2 × 10−8 and 7.5 × 10−8 cm2 s−1 by CPD and CV techniques, respectively. The exchange current density values, determined by a linear polarization technique, are 44 and 27 mA g−1, respectively, for LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloys.  相似文献   

19.
In this work, AB5 type rare earth-based and AB2 type TiCr2-based hydrogen storage alloys were studied for the purpose of high-pressure hydrogen compression. A pair of hydrogen storage alloys, Ml0.55Mm0.2Ca0.25Ni5 (Ml: La-rich mischmetal; Mm: Ce-rich mischmetal) and (Ti0.97Zr0.03)1.1Cr1.6Mn0.4, with favorable hydrogen storage properties was developed as the alloys for a double-stage high-pressure metal hydride hydrogen compressor (MHHC). With the developed alloy pair, we designed and built a MHHC prototype with hydrogen capacity of 100 L, which could produce high-pressure ultrapure hydrogen with pressure of 45 MPa and purity of 99.9999% from industrial grade hydrogen (98% purity) at pressure of around 2 MPa. During the compression procedure, only hot water is used as the heating source. The compression characteristics were studied and the thermal efficiency was calculated.  相似文献   

20.
An effective and durable hydrogen storage module was required to fuel micro-power systems. Two primary specifications for the hydrogen fuel module in this application were a high volumic storage capacity and rapid hydrogen storage and release under atmospheric pressure or lower at room temperature. In addition, the hydrogen module should be operable for thousands of cycles with fast hydriding and dehydriding rates and be resistant to deactivation on exposure to air for many months and longer. In our prior work, mechanical grinding a small amount of palladium with the hydrogen storage alloys was shown to greatly improve the hydrogen storage performance. The palladium treatment of three intermetallic alloys, AB5 type LaNi4.7Al0.3 and CaNi5, and A2B type Mg2Ni, lowered the activation pressure to sub-atmospheric pressure at room temperature and also significantly increased the hydrogen absorption and desorption rates. This work focused on the durability of hydrogen absorption and desorption performances after exposure of the storage materials to air. The palladium treated hydrogen storage alloys retained both low activation pressures and fast absorption and desorption rates even after more than 2 years air exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号