首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为研究曲轴疲劳裂纹及其寿命,使用ABAQUS和FRANC3D软件对曲轴裂纹进行引入及扩展分析,基于裂纹剩余寿命计算和初始裂纹形状比对,对应力强度因子进行研究。结果表明,当裂纹深度扩展至18.2 mm时,等效应力强度因子达到曲轴材料断裂韧性,裂纹产生至临界深度,剩余寿命为8.6×105次;在裂纹深度一定时,初始裂纹的表面长度越长,裂纹扩展寿命越短,初始裂纹表面长度越短,裂纹扩展寿命越长;裂纹初始角度越大,裂纹前缘最深处的应力强度因子越低;裂纹初始角度越大,裂纹扩展后得到的裂纹长度越短,裂纹扩展寿命越长。  相似文献   

2.
疲劳裂纹的萌生以及扩展对于零构件的安全使用存在着巨大的潜在隐患,对于广大从事材料研发工作的技术人员来说,掌握疲劳裂纹扩展的基本规律,了解国内外疲劳裂纹扩展的最新研究进展是非常必要的。本文概括了疲劳裂纹在近门槛扩展阶段和高速扩展阶段(Paris区)的扩展规律,总结了近年来国内外学者在这2个扩展阶段的最新研究进展,结合近年来飞速发展的计算机技术,概述了计算机模拟技术在疲劳裂纹扩展研究领域中的广泛应用。  相似文献   

3.
本文应用权函数法定量地描述了疲劳裂纹在焊接残余应力场中的扩展特性,提出了利用已知的母材疲劳裂纹扩展速率来予测焊接件疲劳裂纹扩展速率的关系式。  相似文献   

4.
疲劳裂纹扩展速率测试及表征的一点讨论   总被引:1,自引:1,他引:1  
在没有分析真实应力-应变状态并得到证实的情况下,文献[1,2]认为在所拟合得到的折线裂纹扩展速率中,第1阶段的直线属于平面应变区,第2阶段的直线属于平面应力区,这一观点值得商榷。  相似文献   

5.
李航月  孙海林 《机械强度》1999,21(3):218-220
研究Inconel718镍基合金表面短裂纹在喷丸残余应力场中的扩展行为。用扫描电中的疲劳加载装置对表面裂纺的事行为进行原位观察和测量。研究表明,表面短裂纹具有较穿透短裂纹更低的扩展门槛值,表面短裂纹的闭合与残余压应力场的大小和分布密切相关,残余应力场中的表面短裂纹扩展及开关变化完全可以通过其闭合行为的变化进行解释。  相似文献   

6.
本文采有沿焊缝分段切割,依次释放残余弹性变形的方法,测定了沿焊缝横向残余应力的分布规律。由于切割试样可近似地模拟疲劳裂纹扩展,通过测量释放的应力,计算出残余应力的分布,可分析残余应力对疲劳裂纹扩展速率的影响规律。  相似文献   

7.
对对称双V型缺口试件的疲劳试验结果表明,压缩超载后,缺口试件的疲劳裂纹扩展速率增大,其原因是由于压缩超载后在缺口根部产生了反向残余拉应力。对此残余应力分布,本文采用了弹塑性有限元方法进行计算,并运用R′法定量分析了压缩超载残余应力对疲劳裂纹扩展的影响。  相似文献   

8.
表面疲劳短裂纹在残余压应力场中的扩展   总被引:1,自引:0,他引:1  
研究Inconel718镍基合金表面短裂纹在喷丸残余应力场中的扩展行为。用扫描电镜中的疲劳加载装置对表面裂纹的闭合行为进行原位观察和测量。研究表明,表面短裂纹具有较穿透短裂纹更低的扩展门槛值,表面短裂纹的闭合与残余压应力场的大小和分布密切相关,残余压应力场中的表面短裂纹扩展及形状变化完全可以通过其闭合行为的变化进行解释。  相似文献   

9.
冯忠信 《机械强度》1996,18(1):25-27
对42CCrMo4钢质调质试样疲劳裂纹扩展时的表面残余应力测定表明,在裂纹尖端前方和裂纹两则一定范围生成残余应力,裂纹尖端处压应力最大。随着裂纹的扩展压应力范围增大,最大压应力增加,表明残余应力始终处于一动态再分布过程中,与裂纹尖端区域的塑性变形直接相联系。裂纹扩展时残余应力的真实分布状态,按理想模型已不能作出圆满描述。由于裂纹尖端塑性变形区较小,选用合适的X线光栅孔长测的残余应力较为真实。  相似文献   

10.
通过疲劳试验,研究焊接残余应力对疲劳裂纹萌生和扩展性能的影响,以及残余应力的再分配。试验结果表明,垂直于裂纹方向的纵向残余应力促进孔边疲劳裂纹的萌生和扩展;残余应力随焊缝金属的应变松弛而降低,它对疲劳裂纹扩展速率的影响相应减小;残余应力场中疲劳裂纹扩展速率仍可以用Paris /公式计算。  相似文献   

11.
该文基于有限元分析方法,将曲轴划分为89个形状规则的组成部分,创建了72个用于施加连杆力载荷的工作坐标。在设计工况(柱塞推力6500kg)下,对曲轴按照每隔15°一个角度工况,共24个不同角度上的工作载荷情况进行静力有限元分析,共得到24种工况的应力场及应力强度。对曲柄销与曲柄过渡的圆角面进行了详细的疲劳强度分析,并对安全系数最小节点的应力值变化规律进行了描述。  相似文献   

12.
传统上疲劳裂纹扩展速率以一个参量——应力强度因子幅(PARIS模型)或有效应力强度因子幅(ELBER模型)来表达。PARIS模型不能统计应力比效应和变幅加载历史。ELBER裂纹闭合模型虽被广泛应用,但确定其开闭口载荷的测量方法很多,且测量结果均存在主观性。最近研究表明,疲劳裂纹扩展不仅依赖于应力强度因子幅,还与最大应力强度因子有关。并且KUJAWSKI提出了两参量模型,该模型避开了有争议的裂纹闭合效应。基于一个载荷循环中柔度变化与裂纹尖端开闭口与弹塑性行为的关系,提出一个新的具有物理意义的两参量驱动力模型。针对Q345钢焊接接头各区域进行两种应力比R=0.1和0.5的疲劳裂纹扩展试验。使用该模型针对Q345钢焊接接头各区域的疲劳裂纹扩展数据进行验证。结果表明,提出的新模型在预测应力比对裂纹扩展速率的影响时比上述三个模型更有效。  相似文献   

13.
曲轴是发动机的关键部件,其性能的好坏直接影响到发动机的整体性能。三轮摩托车在行驶过程中经常出现曲轴断裂现象,因此,影响了产品的质量和企业的声誉。应用有限元软件对三轮摩托车发动机曲轴进行有限元建模和计,算,得到了曲轴工作过程中的应力图,找到了曲轴断裂的部位,与实际的断裂位置完全吻合,表明采用有限元方法对曲轴进行断裂分析是可行、有效的。同时对曲轴提出了改进方案。  相似文献   

14.
弹塑性疲劳裂纹扩展行为的数值模拟   总被引:3,自引:0,他引:3  
基于ABAQUS有限元软件建立内聚单元模型以研究I型弹塑性疲劳裂纹的扩展过程。利用UEL子程序定义内聚单元的疲劳损伤累积准则以识别疲劳裂纹扩展过程中裂纹尖端的位置,并预测裂纹扩展速率da/d N。结果发现,预测的裂纹扩展速率与已有的试验结果吻合良好。通过ABAQUS软件中的温度-位移耦合分析方法同步获取裂纹扩展过程中因塑性变形能引起的裂纹尖端瞬态温度场的变化。结果显示,疲劳损伤累积准则所识别的裂纹尖端位置与裂纹扩展时最大温升点的位置具有一致性。这说明疲劳裂纹扩展过程中温度信号的变化也可以用于裂纹扩展规律的研究。基于数值模拟的方法验证了疲劳裂纹扩展过程中裂纹尖端的温升信号ΔT与裂纹扩展速率da/d N、应力强度因子范围ΔK之间的幂函数关系。研究成果有望用于疲劳裂纹扩展寿命的快速预测。  相似文献   

15.
某发动机钢曲轴改球铁曲轴的可行性分析   总被引:1,自引:0,他引:1  
由于降成本的需要,某发动机曲轴材料由钢改为球铁,通过对比分析,分别评估两种材料的曲轴强度和曲轴系的扭振,分析结论是安全系数、曲轴自由端共振振幅及许用应力均在许可范围内,说明该发动机把曲轴材料由42CrMo改为QT800—6是安全的。  相似文献   

16.
通过对不同热处理后获得3种典型显微组织的粉末高温合金FGH96合金试样在650 进行保载90 s和5 s并恒载荷循环应力作用下的疲劳试验,研究组织特征对疲劳裂纹扩展速率的影响规律,确定不同载荷条件下孕育期、萌生期、扩展期及瞬断期所占的比率。结果表明,γ相特征显著影响疲劳裂纹扩展速率;疲劳行为对保载时间存在敏感性,随保载时间的延长,在疲劳-蠕变的交互作用下会明显加快合金疲劳裂纹扩展;在整个疲劳破坏过程中,萌生比率均高于扩展比率,说明该合金抗裂纹萌生的能力要高于抗裂纹扩展的能力;此外,该合金疲劳裂纹扩展四个阶段在整个断裂周次所占的比率分配上,孕育期比率一般较小,萌生期和扩展期比率较大,瞬断期的比率很小,表明该合金裂纹扩展一旦失稳将高速扩展并迅速断裂。  相似文献   

17.
通过二维弹塑性有限元计算得到Ⅰ型静态裂纹在常幅疲劳载荷下裂纹尖端塑性应变能,进而获得裂纹尖端塑性应变能和应力强度因子幅值的非线性关系;根据能量平衡概念,建立了裂纹扩展速率与裂纹尖端塑性应变能的关系。由此得到一种基于裂纹尖端塑性应变能的疲劳裂纹扩展寿命预测模型,利用该模型预测了中心裂纹平板的疲劳裂纹扩展寿命,预测结果与试验值吻合得很好。  相似文献   

18.
疲劳裂纹扩展影响因素研究综述   总被引:1,自引:0,他引:1  
文中通过介绍疲劳裂纹扩展的规律,指出了疲劳裂纹扩展的研究途径。残余应力、超载、温度、加载频率和应力比是影响疲劳裂纹扩展的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是研究者关注的问题。文中介绍了近年来残余应力、超载、温度、加载频率和应力比对材料疲劳裂纹扩展的影响机理方面的研究,论述了其影响效果,得出了常用结论。  相似文献   

19.
结合虚拟样机技术和有限元分析技术,使用Pro/ENGNEER和ADAMS建立发动机曲轴连杆机构的虚拟样机后,对曲轴连杆机构进行了多体动力学仿真,得到发动机曲轴承受的动态载荷,从曲轴所受载荷中找出最大值,然后使用ADAMS与ANSYS的接口,将载荷施加在曲轴的有限元模型上,最后使用ANSYS计算了曲轴的最大应力和应变,找出了曲轴受力的危险部位,为曲轴的优化设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号