首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术,该技术颠覆了传统加工设计和制造理念,同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合,可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述,介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段,将成为推动智能材料发展的关键。  相似文献   

2.
3.
《工程(英文)》2017,3(5):663-674
The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.  相似文献   

4.
The onset of multi-material 3D printing and the combination of smart materials into the printable material has led to the development of an exciting new technology called 4D printing. This paper will introduce the background and development into 4D printing, discuss water reactive 4D printing methods and temperature reactive 4D printing, modelling and simulation software, and future applications of this new technology. Smart materials that react to different external stimuli are described, along with the benefits of these smart materials and their potential use in 4D printing applications; specifically, existing light-reactive smart materials. 4D printing has the prospective to simplify the design and manufacturing of different products and the potential of automating actuation devices that naturally react to their environment without the need for human interaction, batteries, processors, sensors, and motors.  相似文献   

5.
With most Additive Manufacturing (AM) technology variants, build processes take place inside an internal enclosed build container, referred to as a ‘build volume’. It has been demonstrated that the effectiveness with which this volume is filled with product geometries forms an important determinant of overall process efficiency in AM. For effective operations management, it is important to understand not only the problem faced, but also which methods have proved effective (or ineffective) for problems with these characteristics in the past. This research aims to facilitate this increased understanding. The build volume packing task can be formulated as a three-dimensional irregular packing (3DIP) problem, which is a combinatorial optimisation problem requiring the configuration of a set of arbitrary volumetric items. This paper reviews existing general cutting and packing taxonomies and provides a new specification which is more appropriate for classifying the problems encountered in AM. This comprises a clear-cut problem definition, a set of precise categorisation criteria for objectives and problem instances, and a simple notation. Furthermore, the paper establishes an improved terminology with terms that are familiar to, but not limited to, researchers and practitioners in the field of AM. Finally, this paper describes a new dataset to be used in the evaluation of existing and proposed computational solution methods for 3DIP problems encountered in AM and discusses the importance of this research for further underpinning work.  相似文献   

6.
Hierarchical self-morphing refers to the concurrent global and local changes in shape or structure. Previous research works have demonstrated 3D printed self-morphing structures and the sequential folding/unfolding behaviours. However, the shape change events occurred mainly at the global level in a water environment either through absorbing moisture or through heating. Concurrent global and local shape changes in an ambient environment have not been reported. In this paper, we report a hierarchically blooming flower that blossoms in an ambient environment. Our design considers the strain limit through understanding the effect of thickness on the local strain to avoid fracture and the appropriate allocation of multiple materials to achieve predefined global and local shape changes. This design approach of hierarchical 4D printing may be useful for a variety of applications that involve controlled self-morphing structures with complex geometries.  相似文献   

7.
This study investigates the potential of additive manufacturing (i.e. 3D printing) to alter established manufacturing and supply chain processes, complementing previous research work that deals with additive manufacturing and rapid prototyping. Additive manufacturing is a manufacturing technique, which allows the direct fabrication of three-dimensional design models using an additive approach by adding layer after layer. As additive manufacturing is inherently less wasteful and only applies raw material where needed, it constitutes a chance to reduce materials usage and related inventories. Even though the technology has faced considerable hype, its adoption still does not match the high expectations. The aim of this study is to overcome limitations of state-of-the-art impact assessments by integrating the potential reduction of materials inventories through the adoption of additive manufacturing in manufacturing and to point out possible implications for supply chain processes. For this purpose, a dynamic evaluation model was developed analysing the adoption of additive manufacturing by integrating the Bass Diffusion Model to provide interesting and novel results for both practitioners and researchers. The study shows that additive manufacturing can indeed reduce raw materials inventory by approximately 4% and that the diffusion rate is likely to be affected by the utility of the technology.  相似文献   

8.
Additive manufacturing or three-dimensional (3D) printing is rapidly becoming a viable production method, advancing from its origins as a ‘rapid-prototyping’ technology. However, advances in 3D printing technology indicate that 3D printing machines will proliferate in corporate manufacturing and the homes of consumers. Moreover, the advent of bioprinting could potentially transform regenerative medicine.

3D printing presents unique challenges to the owners of intellectual property rights. Rather than purchasing objects through a company or manufacturer, an entity or individual may simply download blueprints to print product components. An infringer may well be the consumer with no clear third party to hold responsible for inducing the infringement. Such infringement, if widespread and unchecked, may undermine investment in research and development, in turn leading to innovative stagnation.

This article presents the quandary accompanying the additive manufacturing revolution, the corresponding legal developments in its wake, and various approaches to protect innovation in today's changing landscape.  相似文献   

9.
ABSTRACT

Additive manufacturing (AM), commonly known as three-dimensional (3D) printing or rapid prototyping, has been introduced since the late 1980s. Although a considerable amount of progress has been made in this field, there is still a lot of research work to be done in order to overcome the various challenges remained. Recently, one of the actively researched areas lies in the additive manufacturing of smart materials and structures. Smart materials are those materials that have the ability to change their shape or properties under the influence of external stimuli. With the introduction of smart materials, the AM-fabricated components are able to alter their shape or properties over time (the 4th dimension) as a response to the applied external stimuli. Hence, this gives rise to a new term called ‘4D printing’ to include the structural reconfiguration over time. In this paper, recent major progresses in 4D printing are reviewed, including 3D printing of enhanced smart nanocomposites, shape memory alloys, shape memory polymers, actuators for soft robotics, self-evolving structures, anti-counterfeiting system, active origami and controlled sequential folding, and some results from our ongoing research. In addition, some research activities on 4D bio-printing are included, followed by discussions on the challenges, applications, research directions and future trends of 4D printing.  相似文献   

10.
This project analyses the viability of an efficient modelling approach using a semi-automatic algorithm within a Computer Aided Design (CAD) application in combination with low-cost digitising devices and low-cost Additive Manufacturing (AM) printers when designing and manufacturing patient-specific face masks. The aims of the study were to enable clinical practitioners to utilise the advantages of three-dimensional (3D) scanning, CAD and AM without having to be trained to use design/engineering software. Face features were captured using two 3D devices. The resulting meshes were compared via the Hausdorff Distance method. A semi-automatic modelling procedure was developed with ‘Rhinoceros’ and ‘Grasshopper’ to model the face mask and customise several features. With that procedure, volunteers modelled a face mask in less than 30 minutes in their first attempt. The resulting virtual mask was manufactured with two AM printers. An initial economic study indicated that the presented approach offers a feasible alternative to the current practices.  相似文献   

11.
Abstract

Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.  相似文献   

12.
As the industrial requirements change at a rapid pace due to the drastic evolution of technology, the necessity of quickly investigating potential system alternatives towards a more efficient manufacturing system design arises more intensely than ever. Manufacturing systems simulation has proven to be a powerful tool for designing and evaluating a manufacturing system due to its low cost, quick analysis, low risk and meaningful insight that it may provide, improving thus the understanding of the influence of each component. Simulation comprises an indispensable set of IT tools and methods for the successful implementation of digital manufacturing. It allows experimentation and validation of product, process, and system design and configuration. This paper investigates the major historical milestones in the evolution of manufacturing systems simulation technologies and examines recent industrial and research approaches in key fields of manufacturing. It describes how the urge towards digitalisation of manufacturing in the context of the 4th Industrial revolution has shaped simulation in the design and operation of manufacturing systems and reviews the new approaches that have arisen in the literature. Particular focus is given to technologies in the digitalised factories of the future that are gaining ground in industrial applications simulation, offering multiple advantages.  相似文献   

13.
Additive manufacturing technology has been evolving for several years. New material options, better processing speeds and greater autonomy are some of the characteristics of this technology that are still under research. However, in its current state, many commercially available 3D printers are competing with traditional manufacturing techniques in the fabrication of end-use products. In this paper, different additive manufacturing technologies are compared with injection moulding in a real-world case study. The comparison is conducted in terms of lead time and total production cost. From the case under study, it becomes obvious that none of the additive manufacturing technologies examined is yet able to practically replace injection moulding for medium- and high production volumes. However, when considering low-volume production, both rapid tooling and additive manufacturing may offer an alternative that could result into shorter lead times and decreased total production costs. In addition, the introduction of Additive Manufacturing in a producer’s production portfolio can increase flexibility, reduce warehousing costs and assist the company towards the adoption of a mass customisation business strategy.  相似文献   

14.
15.
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.  相似文献   

16.
The current available selective laser sintering (SLS) and selective laser melting (SLM) systems have relatively small effective building volumes, which do not offer capability to integrally manufacture a large dimension component. Therefore, our research team in Huazhong University of Science and Technology, China, has broken through some key techniques such as the large powder bed preheating system and multi-laser scanning technique, and then successfully developed a series of large-scale SLS systems with effective building volumes up to 1400×1400×500 mm3, and an SLM system with an effective building volume of 500×250×400 mm3. These large-scale SLS/SLM systems will not only offer new capability to make large complex prototypes and products, but also provide higher volume production capability to make numerous small parts rapidly and cost-effectively. In addition, several high performance materials have been developed for the large-scale SLS/SLM systems.  相似文献   

17.
Smart materials, also known as intelligent materials, which are responsive to the external stimuli including heat, moisture, stress, pH, and magnetic fields, have found extensive applications in sensors, actuators, soft robots, medical devices and artificial muscles. Using three-dimensional (3D) printing techniques for fabrication of smart devices allows for complex designs and well-controlled manufacturing processes. 4D printing is attributed to the 3D printing of smart materials that can be significantly transformed over time. Herein the smart materials including hydrogels and polymeric nanocomposites used in 4D printing were reviewed and the fundamental mechanisms responsible for the functionalities were discussed in detail. In this report, 4D printing of smart systems and their applications in sensors, actuators and biomedical devices were reviewed to provide a deeper understanding of the current development and the future outlook.  相似文献   

18.
Recent efforts and advances in additive manufacturing (AM) on different types of new materials are presented and reviewed. Special attention is paid to the material design of cladding layers, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the AM process, and the resulted microstructures and properties, as well as the relationship between these factors. Thereafter, the trend of development in the future is forecasted, including: Effects of the particles size and size distribution of powders; Approaches for producing fine microstructures; Opportunities for creating new materials by AM; Wide applications in reconditioning of damaged components; Challenges for deep understanding and applications of the AMed new materials. The idea of “Develop Materials” or “Create Materials” by AM is highlighted, but a series of scientific, technological and engineering problems remain to be solved in future.  相似文献   

19.
3D打印技术研究现状和关键技术EI北大核心CSCD   总被引:10,自引:0,他引:10  
本文首先简要介绍了3D打印技术的基本原理及分类,然后重点介绍了有关金属材料3D打印的几种方法:电子束熔化成形(EBM)、激光选区熔化成形(SLM)、激光快速成形技术(LDMD)。简述了金属材料3D打印的应用领域及国内外发展情况及研究现状。文章最后结合国内外金属材料3D打印的研究现状,指出金属材料3D打印需要在打印用粉末、金属3D打印设备、3D打印零件无损检测方法、3D打印零件的失效行为和寿命预测等方面进行重点研究,并建立3D打印零件的无损检测标准规范以及3D打印材料全面力学性能数据库。  相似文献   

20.
The ever-present drive for increasingly high-performance designs realized on shorter timelines has fostered the need for computational design generation tools such as topology optimization. However, topology optimization has always posed the challenge of generating difficult, if not impossible to manufacture designs. The recent proliferation of additive manufacturing technologies provides a solution to this challenge. The integration of these technologies undoubtedly has the potential for significant impact in the world of mechanical design and engineering. This work presents a new methodology which mathematically considers additive manufacturing cost and build time alongside the structural performance of a component during the topology optimization procedure. Two geometric factors, namely, the surface area and support volume required for the design, are found to correlate to cost and build time and are controlled through the topology optimization procedure. A novel methodology to consider each of these factors dynamically during the topology optimization procedure is presented. The methodology, based largely on the use of the spatial gradient of the density field, is developed in such a way that it does not leverage the finite element discretization scheme. This work investigates a problem that has not yet been explored in the literature: direct minimization of support material volume in density-based topology optimization. The entire methodology is formulated in a smooth and differentiable manner, and the sensitivity expressions required by gradient based optimization solvers are presented. A series of example problems are provided to demonstrate the efficacy of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号