首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium equations of the first-order nonlinear von Karman theory for FG circular plates under asymmetric transverse loading and heat conduction through the plate thickness are reformulated into those describing the interior and edge-zone problems of the plate. A two parameter perturbation technique, in conjunction with Fourier series method is used to obtain analytical solutions for nonlinear behavior of functionally graded circular plates with various clamped and simply-supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified with known results in the literature. The load–deflection curves for different loadings, boundary conditions, and material constant in a solid circular plate are studied and discussed. It is shown that the behavior of FG plates with clamped or simply-supported boundary conditions are completely different. Under thermo-mechanical loading, snap-through buckling behavior is observed in simply-supported FG plates which are immovable in radial direction. Moreover, it is found that linear theory is inadequate for analyzing FG and also homogenous plates with immovable boundary supports in radial direction and subjected to thermal loading, even for deflections that are normally considered small.  相似文献   

2.
Buckling analysis of perfect circular functionally graded plates with surface-bounded piezoelectric layers based on the first-order shear deformation theory is presented in this article. The material properties of the functionally graded (FG) layer are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituents. The plate is assumed to be under constant electrical field and two types of thermal loadings, namely, the uniform temperature rise and nonlinear temperature gradient through the thickness. Also, the stability of a plate under radial mechanical compressive force is examined. The equilibrium and stability equations are derived based on the first-order shear deformation plate theory using a variational approach. The boundary condition of the plate as an immovable type of the clamped edge is considered. Resulting equations are employed to obtain the closed-form solution for the critical buckling temperature for each loading case. The effects of electric field, piezo-to-host thickness ratio, and power law index of functionally graded plates subjected to thermo-mechanical-electrical loads are investigated. The results are compared with the classical plate theory and verified with the available data in the open literature.  相似文献   

3.
In this article, an analytical method is presented for thermo-mechanical vibration analysis of functionally graded (FG) nanoplates with different boundary conditions under various thermal loadings including uniform, linear, and nonlinear temperature rise via a four-variable plate theory considering neutral surface position. The temperature-dependent material properties of FG nanoplate vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The exactness of solution is confirmed by comparing obtained results with those provided in the literature. A parametric study is performed investigating the effects of nonlocal parameter, temperature fields, gradient index, and boundary conditions on vibration behavior of FG nanoplates.  相似文献   

4.
Static analysis of functionally graded (FG) solid circular/annular plates imbedded in piezoelectric layers under thermo-electro mechanical load is investigated using the differential quadrature method. The plate has various edge boundary conditions and its material properties are assumed to vary in an exponential law with the Poisson ratio to be constant. The method is validated by comparing numerical results with the results obtained in the literature. The effects of the gradient index, thickness to radius ratio, and edges boundary conditions on the thermoelastic behavior of FG solid circular and annular plates are investigated.  相似文献   

5.
Hygrothermal and mechanical buckling responses of functionally graded (FG) plates resting on Winkler–Pasternak’s foundations are presented in this paper using a refined quasi-3D model. The effects due to transverse normal strain and shear deformation are both included. The present model exactly satisfies stress boundary conditions on the upper and lower surfaces of the FG plate without using shear correction factors. It is assumed that the material properties vary according to a power law of the thickness coordinate variable. The hygrothermal buckling equilibrium equations are derived from the principle of virtual work for FG plates resting on Winkler–Pasternak’s foundations with simply-supported boundary conditions. Two types of thermal and hygrothermal loading, uniform thermal and hygrothermal rise, linear thermal and hygrothermal distribution through the thickness are considered. Numerical results are presented to verify the accuracy of the present study. The effects played by Winkler–Pasternak’s parameters, plate aspect ratio, side-to-thickness ratio, gradient index, and loading type on the critical buckling of the FG plates are all investigated.  相似文献   

6.
This paper addresses three-dimensional (3-D) free vibration characteristic of thick circular/annular functionally graded (FG) plates with surface-bonded piezoelectric layers on the basis of 3-D Ritz solution. Three displacement components along with electrical potential field of the plate are expressed by a set of Chebyshev polynomials multiplied by geometry boundary functions. Both open-circuit and closed-circuit surface conditions are taken into account. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey either exponent or power law distribution of the volume fraction of the constituents. The effect of thickness-to-radius ratio, inner-to-outer radius ratio, piezo-to-host thickness ratio and gradient index on the natural frequencies of coupled piezoelectric FG circular/annular plates is investigated for different electrical and mechanical boundary conditions. It is observed that, unlike isotropic homogeneous circular/annular plates, frequency parameters of their piezoelectric coupled FG counterparts significantly increase with an enhancement in the host plate thickness to radius ratio. Results also show that the frequency parameters for open-circuit condition are higher than those for closed-circuit condition.  相似文献   

7.
Based on three-dimensional theory of elasticity axisymmetric static analysis of functionally graded circular and annular plates imbedded in piezoelectric layers is investigated using differential quadrature method (DQM). The plate has various edges boundary conditions and its material properties are assumed to vary in an exponential law with the Poisson ratio to be constant. This method can give an analytical solution along the graded direction using the state space method (SSM) and an effective approximate solution along the radial direction using the one-dimensional DQM. The method is validated by comparing numerical results with the results obtained in the literature. Both the direct and the inverse piezoelectric effects are investigated and the influence of piezoelectric layers on the mechanical behavior of plate is studied. The effects of the gradient index, thickness to radius ratio, and edges boundary conditions on the static behavior of FG circular and annular plates are investigated.  相似文献   

8.
Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence, high accuracy and reliability with fewer degrees of freedoms on account of the excellent approximation property of BSWI. Numerical examples concerning various length-to-thickness ratios, volume fraction indexes, aspect ratios and boundary conditions are carried out for bending, free vibration and buckling problems of FG plates. These comparison examples demonstrate the accuracy and reliability of the proposed WFEM method comparing with the exact and referential solutions available in literatures.  相似文献   

9.
The three-dimensional impact behaviours of functionally graded (FG) circular plates were studied under a drop-weight. The functionally graded circular plate was composed of ceramic (SiC) and metal (Al) phases and the through-thickness mechanical properties through the region between the metal and ceramic layers vary continuously according to a power-law distribution of the volume fraction of the ceramic. The through-thickness material properties of the FG circular plate were determined using the Mori–Tanaka scheme. The effects of layer number and compositional gradient exponent as well as impactor velocity and plate radius on the elastic impact response of the FG circular plates were investigated. The compositional gradient exponent, impactor velocity and plate radius played an important role on the impact response of the FG circular plates, whereas the layer number through the plate thickness had a minor effect. In addition, the failure strains in all layers were determined using Tamura–Tomota–Ozowa (TTO) model in order to predict the damage regions in each layer through the thickness of FG circular plates.  相似文献   

10.
Free vibration of Levy-type thick functionally graded (FG) circular cylindrical shell panels is investigated to identify the validity range of two common shell theories namely Donnell and Sanders theories. FG material properties change through the thickness direction according to a power law distribution. The state space approach is applied to solve the problem. The present results are compared with those of the literature and a 3D finite element model for isotropic and FG materials. The effects of various geometry and material parameters on the validity range of these theories are studied for different boundary conditions. The results show that unlike Sanders theory, Donnell one cannot accurately capture natural boundary conditions such as force and moment resultants.  相似文献   

11.
This work deals with the geometrically nonlinear thermo-electro-elastic analysis of functionally graded (FG) annular sector plates integrated with the annular patches of cylindrically orthotropic piezoelectric fiber reinforced composite (PFRC). The annular patches with an external voltage across their thickness act as the distributed actuators and their performance in controlling the nonlinear flexural deformations of the host FG plates is investigated. The temperature field is assumed to be spatially uniform over the plate surfaces and varied through the thickness of the substrate FG plates. The temperature-dependent material properties of the FG plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson’s ratio is assumed to be a constant over the domain of the substrate plate. A finite element model of the overall smart FG annular sector plate is developed based on the first order shear deformation theory and the Von Karman nonlinear strain–displacement relations. The governing nonlinear finite element equations are derived employing the principle of minimum potential energy and solved using direct iteration method. The numerical results illustrate significant control authority of the cylindrically orthotropic PFRC annular patches for active control of nonlinear deformations of the substrate FG annular sector plates. The numerical results also reveal the best radial and circumferential locations of the annular PFRC patches for effective control. For a specified circumferential stretch of the annular PFRC patches, their minimum radial length is numerically estimated in such a way that the performance of the overall smart FG plate is not affected significantly. The effects of the material properties and the temperature of the host FG plate on the performance of the annular PFRC patches are also discussed.  相似文献   

12.
In the present article, higher-order shear and normal deformable plate theory together with modified couple stress theory are developed to study the bending analysis of thick functionally graded rectangular micro-plates. One material length scale parameter is used for capturing the size effects. Utilizing the variational approach and also a principle of virtual displacement, a new form of equilibrium equations and the corresponding boundary conditions are derived. It is assumed that material properties vary through the thickness according to the power law function. Finally, an analytical solution for the bending problem of a simply supported FG rectangular micro-plate is presented.  相似文献   

13.
The Shakedown of a functionally graded (FG) Bree plate subjected to coupled constant mechanical loading and cyclically varying temperature is analyzed with more accurate approaches and optimized with the genetic algorithm method. The shakedown theorem takes into account material hardening. The variation of the material properties in the thickness of a FG Bree plate is characterized with a piecewise exponential distribution, which can replicate the actual distribution with sufficient accuracy. In order to obtain the best distribution of the mechanical properties in the FG plate, the distribution of the reinforcement particle volume fraction is optimized with the genetic algorithm (GA). Two numerical examples are presented, which demonstrate the validity of the developed method in the analysis of the shakedown of the FG Bree plate.  相似文献   

14.
In this study, the nonlinear thermo-elastic bending analysis of a functionally graded carbon nanotube-reinforced composite plate resting on two parameter elastic foundations is investigated. The material properties of the carbon nanotube-reinforced composite plates are assumed to be temperature dependent and graded in the thickness direction. The nonlinear formulations are based on a first-order shear deformation plate theory and large deflection von Karman equations. A dynamic relaxation method is employed to solve the plate nonlinear partial differential equations. The effects of volume fraction of carbon nanotubes, thermal gradient, temperature dependency, elastic foundation, boundary conditions, plate width-to-thickness ratio, aspect ratio, and carbon nanotubes distribution are studied in detail.  相似文献   

15.
In this article mixed semi-analytical and analytical solutions are presented for a rectangular plate made of functionally graded (FG) material. All edges of a plate are under simply supported (diaphragm) end conditions and general stress boundary conditions can be applied on both top and bottom surface of a plate during solution. A mixed semi-analytical model consists in defining a two-point boundary value problem governed by a set of first-order ordinary differential equations in the plate thickness direction. Analytical solutions based on shear-normal deformation theories are also established to show the accuracy, simplicity and effectiveness of mixed semi-analytical model. The FG material is assumed to be exponential in the thickness direction and Poisson’s ratio is assumed to be constant.  相似文献   

16.
This paper presents an analytical solution to the static analysis of functionally graded plates, using a recently developed higher order shear deformation theory (HSDT) and provides detailed comparisons with other HSDT’s available in the literature. These theories account for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surfaces, thus a shear correction factor is not required. The mechanical properties of the plates are assumed to vary in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded (FG) plate and boundary conditions are derived by employing the principle of virtual work. Navier-type analytical solution is obtained for FG plates subjected to transverse bi-sinusoidal and distributed loads for simply supported boundary conditions. Results are provided for thick to thin FG plates and for different volume fraction distributions. The accuracy of the present code is verified by comparing it with known results in the literature.  相似文献   

17.
S. Sahraee   《Composite Structures》2009,88(4):548-557
Based on the Levinson plate theory (LPT) and the first-order shear deformation plate theory (FST), the bending analysis of functionally graded (FG) thick circular sector plates is presented. The LPT solutions of FG sectorial plates are first expressed in terms of the solutions of the classical plate theory (CPT) for homogeneous sectorial plates and then presented using a direct method. It is assumed that the non-homogeneous mechanical properties of plate, graded through the thickness, are described by a power function of the thickness coordinate. The results are given in closed-form solutions and verified with the known data in the literature.  相似文献   

18.
In this article, an analytical method for buckling analysis of thin functionally graded (FG) rectangular plates is presented. It is assumed that the material properties of the plate vary through the thickness of the plate as a power function. Based on the classical plate theory (Kirchhoff theory), the governing equations are obtained for functionally graded rectangular plates using the principle of minimum total potential energy. The resulting equations are decoupled and solved for rectangular plate with different loading conditions. It is assumed that the plate is simply supported along two opposite edges and has arbitrary boundary conditions along the other edges. The critical buckling loads are presented for a rectangular plate with different boundary conditions, various powers of FGM and some aspect ratios.  相似文献   

19.
In this article, an exact analytical solution for buckling analysis of moderately thick functionally graded (FG) sector plates resting on Winkler elastic foundation is presented. The equilibrium equations are derived according to the first order shear deformation plate theory. Because of the coupling between the bending and stretching equilibrium equations of FG plates, these plates have deflection under in-plane loads lower than the critical buckling load acting on the mid-plane. The conditions under which FG plates remain flat in the pre-buckling configuration are investigated and the stability equations are obtained based on the flat plate assumption in the pre-buckling state. The stability equations are simplified into decoupled equations and solved analytically for plates having simply supported boundary condition on the straight edges. The critical buckling load is obtained and the effects of geometrical parameters and power law index on the stability of functionally graded sector plates are studded. The results for the critical buckling load of moderately thick functionally graded sector plates resting on elastic foundation are reported for the first time.  相似文献   

20.
Natural frequencies and buckling stresses of plates made of functionally graded materials (FGMs) are analyzed by taking into account the effects of transverse shear and normal deformations and rotatory inertia. The modulus of elasticity of the plates is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional (2-D) higher-order theory for rectangular functionally graded (FG) plates is derived through Hamilton’s principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of FG plates with simply supported edges. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Critical buckling stresses of FG plates subjected to in-plane stresses are also obtained and a relation between the buckling stress and natural frequency of simply supported FG plates without in-plane stresses is presented. The distributions of modal displacements and modal stresses in the thickness direction are obtained accurately by satisfying the surface boundary conditions of a plate. The modal transverse stresses have been obtained by integrating the three-dimensional equations of motion in the thickness direction starting from the top or bottom surface of a plate. The present numerical results are also verified by satisfying the energy balance of external and internal works are considered to be sufficient with respect to the accuracy of solutions. It is noticed that the present 2-D higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported FG plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号