首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For fatigue damage prognosis of a long-span steel bridge, the dynamic stress analysis of critical structural components of the bridge under the future dynamic vehicle loading is essential. This paper thus presents a framework of dynamic stress analysis for fatigue damage prognosis of long-span steel bridges under the future dynamic vehicle loading. The multi-scale finite element (FE) model of the bridge is first developed using shell/plate elements to simulate the critical structural components (local models) and using beam/truss elements to simulate the rest part of the bridge (global model). With the appropriate coupling of the global and local models, the multi-scale FE model can accurately capture simultaneously not only the global behavior in terms of displacement and acceleration but also the local behavior in terms of stress and strain. A vehicle traffic load model is then developed for forecasting the future vehicle loading based on the recorded weigh-in-motion (WIM) data and using the agent-based traffic flow microsimulation. The forecasted future vehicle loading is finally applied on the multi-scale model of a real long-span cable-stayed bridge for dynamic stress analysis and fatigue damage prognosis. The obtained results show that the proposed framework is effective and accurate for dynamic stress analysis and fatigue damage prognosis.  相似文献   

2.
Accurate evaluation of the effect of possible damage in critical components on the dynamic characteristics of a structure is of critical importance in developing a robust structural damage identification scheme for a long-span cable-stayed bridge. The strategies of finite element (FE) modelling of a long-span cable-stayed bridge for multi-scale numerical analysis are first investigated. A multi-scale model of the Runyang cable-stayed bridge is then developed, which is essentially a multi-scale combination of a FE model for modal analysis of the entire bridge structure and FE sub-models for local stress analysis of the selected locations with respect to the substructuring method. The developed three-dimensional global-scale and local-scale FE models of Runyang cable-stayed bridge achieve a good correlation with the measured dynamic properties identified from field ambient vibration tests and stress distributions of a steel box girder measured from vehicle loading tests, on the basis of which the effectiveness of some damage location identification methods, including a modal curvature index, a modal strain energy index and a modal flexibility index, are evaluated. The analysis results show that the effect of the simulated damage in various components of the steel box girder on the dynamic characteristics of a long-span cable-stayed bridge should be properly considered in structural damage analyses using multi-scale numerical computation.  相似文献   

3.
张溪  曲佳  李莹 《山西建筑》2008,34(14):334-335
简要论述了目前对钢结构桥梁进行疲劳问题研究的3种主要方法:传统疲劳分析方法、断裂力学分析方法和损伤力学分析方法,对每种方法的优缺点以及适用性进行了分析,可为工程中选择正确方法进行钢桥疲劳分析提供指导。  相似文献   

4.
This article aims at developing an innovative technique of concurrent multi-factor optimisation for updating the multi-scale model of civil infrastructure. A multi-scale model is established for the purpose of concurrently analysing the global response of the structure and non-linear damage of local details in order to meet the needs of evaluation on structural state as well as structural deteriorating. Traditional model updating methods cannot be applied directly to updating such type of models. The technique of concurrent multi-factor optimisation technique (CMFOT) developed in the article can update the multi-scale model by optimising simultaneously the different factors to affect on structural parameters. The key issues of the developed concurrent multifactor optimisation technique are discussed in details, and implementation of the model updating with CMFOT is presented by a case study of a welded steel truss with the available tested data. The multi-scale model of the truss is updated by using the proposed technique and other model updating methods in order to compare their difference. The proposed technique is also applied to updating the concurrent multi-scale model of a long-span suspension bridge, the Runyang Suspension Bridge (RYSB). The results show that CMFOT method is the improvement of traditional model updating methods. The main advantage of CMFOT is that the factors to be considered in CMFOT include not only those sensitive to the updated objective but also other factors sensitive to other objectives to be not updated currently. The computational efficiency of model updating by the CMFOT is higher than others when the correct sequence of multi factors updating is unknown. It is necessary to have sufficient measuring data from the field tests with careful arrangement of the measuring points for the purpose of the model updating with CMFOT for large civil infrastructure like RYSB.  相似文献   

5.
大跨径桥梁钢桥面铺装设计   总被引:14,自引:0,他引:14  
由于大跨径钢箱梁桥面铺装的使用条件、施工工艺、质量控制与要求的特殊性,因此对于特定的桥梁的桥面铺装均需作针对性的专题研究,以保证铺装设计和施工成功。总结了作者近10年对大跨径钢桥面铺装设计理论与方法设计的研究成果,包括铺装材料与结构、钢桥面铺装体系受力特性、疲劳特性、设计指标、轴载换算原则与方法、铺装体系整体优化设计方法、工程实施等技术,研究成果已在南京长江第二大桥、南京长江第三大桥、润扬长江公路大桥、苏通长江大桥和杭州湾大桥等10多座大型钢箱梁桥桥面铺装设计和铺装工程中应用。  相似文献   

6.
Long-span suspension bridges are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. Fatigue assessment shall be performed to ensure the safety and functionality of the bridges. This paper proposes a framework for fatigue analysis of a long-span suspension bridge under multiple loading by integrating computer simulation with structural health monitoring system. By taking the Tsing Ma Bridge in Hong Kong as an example, a computationally efficient engineering approach is first proposed for dynamic stress analysis of the bridge under railway, highway and wind loading. The fatigue-critical locations are then determined for key bridge components, and databases of the dynamic stress responses at the critical locations are established. The time histories of dynamic stresses induced by individual loading during the design life of the bridge are generated based on the databases. The corresponding stress time histories due to the combined action of multiple loading are also compiled. Finally, fatigue analysis is performed to compute the cumulative fatigue damage over the design life of 120 years. The results indicate that it is necessary to consider the combined effect of multiple loading in the fatigue analysis of long-span suspension bridges.  相似文献   

7.
This paper investigates congested traffic loading on long-span bridges through the use of traffic microsimulation. Six months of Weigh-In-Motion free-flow traffic data (including cars) are used as input for the microsimulation of congested traffic. Key parameters that affect traffic loading are identified in the output of the microsimulation, and these parameters form the basis for a more computationally efficient ‘pseudo-microsimulation of congested traffic’ (PMCT) model. This PMCT model is shown to replicate the traffic loading from full microsimulation accurately and allows long-run simulations, equivalent to 1000 years of congested traffic, to be performed with an acceptably short duration. This reduces the significant uncertainties associated with extrapolating short-run simulation results to long return periods. The 1000-year simulated results from the PMCT are compared with the extrapolated results from full microsimulation, and with the traffic loading from some design codes, for different bridge lengths. Both types of microsimulation are also applied to calculate maximum lifetime loading for two typical long-span bridges – one cable-stayed and one suspension bridge – using influence lines determined from finite-element models.  相似文献   

8.
On the basis of massive data collected by the Weigh-in-motion (WIM) system of XiHouMen Bridge, analysis of fatigue-loaded vehicle models and theoretical fatigue life of U ribs butt weld of steel box girder are discussed in this paper. Firstly, basic vehicle information can be obtained from preliminary statistics of various types of vehicles data and the vehicles passing XiHouMen Bridge are divided into seven types based on the number of axles and axle groups. Secondly, the statistical distribution functions of gross vehicle weight under different loading conditions and wheelbase for each type of vehicle are developed to obtain the equivalent fatigue vehicle load. Then, the parameters of various types of fatigue-loaded vehicles are determined by combining the mathematic expectation of gross vehicle weight distribution with Palmgren-Miner fatigue damage accumulation theory. Finally, the seven types of fatigue-loaded vehicles are applied to the component-coupled finite element model of the steel box girders in XiHouMen Bridge and the theoretical fatigue life of the U ribs butt weld can be estimated. This research provides a reference to define the vehicle models for fatigue loading on steel box-girder bridges based on WIM data.  相似文献   

9.
提出基于长期监测数据的钢箱梁焊接细节疲劳可靠度的评估方法,并以润扬大桥悬索桥和斜拉桥钢箱梁顶板-U型肋焊接细节为对象开展应用研究。首先,建立疲劳损伤极限状态方程并讨论方程中各个参数的概率分布特性,在此基础上,采用最优化方法进行疲劳可靠度的求解,得到疲劳可靠度指标随服役时间增长的变化规律和日循环次数Nd的随机性对可靠度的影响。最后重点研究疲劳荷载效应增长对可靠度的影响,并据此提出对大桥日常运营管理的建议。结果表明:①将Nd作为随机变量处理是偏安全的,且Nd的随机性对斜拉桥焊接细节可靠度影响要较悬索桥更为显著;②悬索桥焊接细节的疲劳可靠度明显低于斜拉桥;③考虑疲劳荷载效应的增长会显著减小两桥焊接细节的疲劳可靠度;④为了得到钢箱梁焊接细节在服役期内的疲劳可靠度的准确评估,对其进行长期的应变监测是必要的。  相似文献   

10.
11.
大跨径钢桥面铺装体系多目标优化设计   总被引:3,自引:0,他引:3  
将大跨径钢桥的正交异性钢桥面和其上的铺装层作为钢桥面铺装体系整体进行多目标优化设计。取大跨径钢桥面铺装体系造价及铺装层表面极限应力最小化两类指标构造目标函数,在此基础上建立多目标优化设计的数学模型。采用评价函数中的线性加权和法进行求解,开发了钢桥面铺装体系结构多目标优化设计程序,以国内某大跨径钢桥为对象,采用多目标优化设计方法,给出钢桥面铺装体系中各参数的合理界限。应用国际通用有限元软件SPA93程序对其进行验证,结果表明,应用多目标优化设计方法对大跨径钢桥面铺装体系设计是可行的。研究成果可为大跨径钢桥面铺装体系结构的设计提供理论依据。  相似文献   

12.
Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.  相似文献   

13.
采用湿盐砂锈蚀方法获得腐蚀环境钢筋混凝土劣化试件,选取与车辆荷载作用下公路桥梁实际承受的疲劳应力水平,通过8根锈蚀钢筋混凝土梁的弯曲疲劳试验,分析了锈蚀钢筋混凝土梁的疲劳破坏形态及应力水平和钢筋锈蚀率对梁疲劳性能的影响规律。试验结果表明,锈蚀梁的疲劳破坏形态为主筋脆性断裂;在设计应力水平作用下,疲劳加载满足规范200万次要求;在桥梁实际应力水平作用下,未锈蚀试验梁的平均疲劳寿命较规范值减少6.71%;锈蚀较严重的试验梁疲劳寿命较规范值减少13.57%,较同应力水平的未锈蚀梁疲劳寿命减少42.54%,锈蚀对试验梁的疲劳寿命影响显著。随着疲劳循环次数的增加,锈蚀梁钢筋内部出现疲劳损伤、抗弯刚度逐渐退化,混凝土残余应变累积,裂缝演变基本符合快速增加、稳定发展、急剧变化的“三阶段”发展规律。根据试验结果,建立S-N疲劳寿命方程,提出了锈蚀钢筋混凝土梁疲劳寿命计算方法,研究结果为桥梁结构疲劳性能评估提供理论依据。  相似文献   

14.
This work, initiated and funded by BP International, considered a method of simplifying the procedure for the analysis of wind-induced fatigue damage. Common practice currently is to employ a time consuming deterministic stress-cycle counting algorithm to a synthesized time history. It has been shown that by normalizing the damage in a certain way the value of normalized damage becomes completely independent of the wind spectrum and even the structure. It is thus only necessary to compute denormalizing factors which are readily found from wind data and structural analyses. The proposed method is believed to be suitable for a first assessment of fatigue performance and, because of its simplicity and its ability to be presented in calculation sheet format, should be easily used by design engineers.  相似文献   

15.
In this study, various fatigue damage models proposed by researchers have been briefly discussed and found that the models are problem specific and their efficacy needs to be checked for high cyclic fatigue cases such as in railway bridges. Towards this, field studies were conducted to obtain the strain responses from a steel bridge during the passage of scheduled trains and test train formation with enhanced axle loading. Instrumentation was carried out at critical locations to obtain the responses from the girder. Three different scenarios have been considered to avoid the influence of noise. Further, numerical simulation of the bridge subjected to train loading at different speeds was carried out using ANSYS to obtain synthetic data of strain response from the validated finite element model. Analysis was carried out for normal as well as for futuristic speed of the trains. Responses obtained from field measurements as well as from numerical investigations were used to calculate the damage indices. Based on the damage indices, remaining fatigue life of the bridge was evaluated. The present study can be helpful in assessing the health condition of the railway bridges and to check the suitability of further increase in axle load or speed of trains.  相似文献   

16.
循环荷载作用下岩石疲劳本构模型初探   总被引:1,自引:0,他引:1  
为研究循环荷载作用下岩石的疲劳本构模型,提出了3个疲劳基本元件:弹性疲劳元件(HF)、黏性疲劳元件(NF)和塑性疲劳元件(YF)。通过疲劳基本元件的组合建立了稳定疲劳模型(广义开尔文与伯格斯疲劳模型)与不稳定疲劳模型(非线性黏弹塑性疲劳模型);当且仅当n1时,非线性黏弹塑性疲劳模型才可完整模拟岩石的减速疲劳、等速疲劳和加速疲劳3个阶段。研究结果表明:非线性黏弹塑性疲劳模型可较好的模拟岩石的疲劳变形规律;若疲劳变形规律具有明显的减速、等速及加速阶段,则加速疲劳参数n将随岩石单轴抗压强度增大而减小。根据研究结果提出用临界应力比而非临界应力设计疲劳试验的参数,可能更为合理。  相似文献   

17.
The functionality maintenance of European infrastructures like bridges is acquiring more and more importance due to the huge economic losses related to the interruption of their regular service. In particular, fatigue represents one of the most common failure modes occurring in steel and steel–concrete composite bridges: most failures in steel structures are related to fracture and fatigue. Railway bridges endure millions of stress cycles during their life and they are expected to be highly vulnerable to such phenomena. Phenomena like ‘vibration induced’ and ‘distortion induced’ fatigue are still partially uncovered by actual design codes and they represent critical aspects for the assessment of existing bridge remaining life and for the design of new bridges. The European research project FADLESS ‘Fatigue damage control and assessment for railways bridges’, funded by the Research Fund for Coal and Steel, aims at defining innovative technical guidelines for the assessment and control of existing and new bridges with regard to fatigue phenomena induced by vibrations and distortions produced by train passages. The project combines experimental and numerical techniques to study fatigue cracking induced by vibration and distortion phenomena taking into account the dynamic train–bridge interaction effects and the actual traffic spectra on European railway lines. In the present paper, preliminary analyses performed on the Italian case study, the Panaro Bridge, are being reported upon. Results obtained by standard fatigue assessment according to Eurocode rules were compared with the actual fatigue cracks found in the deck secondary components. A preliminary critical review of adopted fatigue assessment methodologies was carried out. Moreover, experimental tests were designed and performed on the bridge in order to identify global and local vibration modes and to evaluate the strain time-histories under train passages of critical details. Finally, experimental global/local mode shapes were compared to numerical results from the preliminary FE bridge model.  相似文献   

18.
为研究不同加载方式下实腹式型钢混凝土T形截面柱沿腹板方向的损伤演化规律,设计并制作了10根缩尺比为1/2、剪跨比为2.5的型钢混凝土T形截面柱,变化参数为轴压比、配钢率及加载制度。基于试验成果,对单调荷载及低周反复荷载作用下T形截面柱的荷载 位移曲线及能量耗散能力进行了分析。结果表明:从初始加载到失效,型钢混凝土T形截面柱的损伤过程可分为5个阶段,分别为无损阶段、轻微损伤阶段、损伤稳步发展阶段、严重损伤阶段和破坏阶段;与单调加载相比,随着位移幅值的增大与荷载循环次数的增加,T形截面柱的承载力、极限变形能力和极限耗能能力均有不同程度的降低。在试验研究的基础上,考虑荷载循环次数、位移幅值与极限承载能力的动态关系以及加载路径对T形截面柱损伤的影响,建立了由最大变形与滞回耗能双参数组合的非线性损伤模型,并验证了该模型的合理性。  相似文献   

19.
The need for determining an effective means for modeling and evaluating existing bridges, particularly for those exceeding their design life, is apparent in the United States infrastructure. In this study a representative through truss bridge is chosen for analysis and modeling comparison. Interpretation of the AASHTO loading for this bridge is presented. Bridge models are identified and both deterministic and probabilistic evaluation methods are used. Results for two two-dimensional models, one composed entirely of truss elements and one containing beam and truss elements, are presented and discussed.  相似文献   

20.
服役结构材料疲劳损伤后的残余力学性能对结构可靠性的评估有着至关重要的作用.为此,对Q690高强钢经不同疲劳损伤后的残余力学性能进行了试验研究.根据Q690高强钢在不同疲劳荷载作用下的疲劳寿命,设定了3级疲劳荷载和9组损伤振动次数,并将Q690高强钢试件在各疲劳荷载下进行不同次数的预损伤疲劳振动.然后,对这些具有不同疲劳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号