首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, composite particles of nano zinc oxide coated with titanium dioxide were prepared and characterized by TEM, XRD, XPS and FT-IR, and the properties of the composite particles for photo catalysis and light absorption were studied. Tetrabutyl titanate (TBT) was hydrolyzed in an alcoholic suspension of nano zinc oxide with diethanolamine (DEA) as an additive, resulting in a film with a thickness of 20–30 nm being coated on the surface of nano zinc oxide, and the composite particles contained ZnTiO3 after drying and calcination. Photocatalysis capabilities of the composite particles for the degradation of phenol in an aqueous solution were greatly improved as compared with nano zinc oxide particles before coating, with pure nano ZnO and nano TiO2 with similar average sizes, or with the mixture of nano ZnO and TiO2 with the similar composition as the composite particles. The light absorption scope of the composite particles was enlarged when compared to nano titanium dioxide with same average size.  相似文献   

2.
This paper presents the results of a study in which nanosized titanium dioxide (TiO2) crystal particles were coated onto the surface of palygorskite fibrous clay which had been modified by silver ions using titanium tetrachloride as a precursor. Coated TiO2 particles with the anatase structure were formed after calcining at 400 °C for 2 h in air. Various analytical techniques were used to characterize the surface properties of titanium dioxide particles on the palygorskite. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that TiO2 particles were supported on the surface of the palygorskite clays and their size was in the range of 3–6 nm. The titanium oxide coatings were found to be very active for the photocatalytic decomposition of methylene blue.  相似文献   

3.
A method for obtaining titanium dioxide (TiO2) nanoparticles by laser ablation has been developed. Pulsed laser irradiation at an intensity of 109 W/m2 leads to sputtering of titanium dioxide in the form of particles with dimensions within 10?C50 nm. The phase composition and morphology of obtained nanoparticles have been studied by the methods of transmission electron microscopy and X-ray diffraction. Thermal annealing above 600°C leads to an increase in the average particle size and induces the structural transition of titanium dioxide from anatase to rutile modification. Quantitative dependences of the particle size and phase composition on the annealing temperature are established. It is established that, using the laser ablation method, it is possible to obtain the anatase phase of TiO2 with increased thermal stability.  相似文献   

4.
The carbon-containing titanium oxide-based composite was first obtained using a pulsed plasma chemical method. The composite was obtained from the following reagents: TiCl4, CH4, and O2. The physical and chemical properties of the TixCyOz composite powders were studied (morphology, chemical, elemental and phase composition). The presence of spherical particles and the cubic and prismatic particles were typical for the synthesised carbon-containing titanium oxide-based composites. The large particles are observed (the average size exceeds 150 nm) and smaller particles (the average size is 15–30 nm). The presence of the dense layer of amorphous carbon (10–15 nm thick) around particles is typical for the composites. The peak with a maximum of 1080 cm?1 is registered in IR absorption spectrum of the TixCyOz synthesised composite. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Ti-O-C bond, which indicates that carbon and titanium in the composite are bound through oxygen. The content of the defined amount of titanium carbide has not been detected.  相似文献   

5.
TiO2/WO3 composite nanotubes were synthesized in an anodic aluminum oxide (AAO) template by a sol–gel method. The prepared nanotubes were characterized by transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, and Brunauer–Emmett–Teller surface area. Using the nanotubes embedded in the AAO templates as catalysts, photocatalytic degradation of methyl orange aqueous solution was carried out under UV light irradiation. The results showed that the TiO2/WO3 composite nanotubes with the thickness about 50 nm could be successfully synthesized by this method. TiO2 showed anatase phase and WO3 displayed monoclinic phase. The composite nanotubes (TiO2/WO3) exhibited higher photocatalytic activity than the pure nanotubes (WO3 or TiO2). The possible reason for improving the photocatalytic activity was also discussed.  相似文献   

6.
GR–TiO2 nanocomposite was prepared by simple chemical method using graphene oxide and titanium isopropoxide (Ti [OCH (CH3)2]4) precursors. The crystalline nature of the composite was characterised by powder X-ray diffraction and the intercalation was explained by Raman spectroscopy. The morphology of the composite was analysed by field emission scanning electron microscopy. The elemental and quantitative measurement of the composite was determined by electron dispersive spectroscopy. The shape and size of the particle was measured by transmission electron spectroscopy and high resolution spectroscopy. The surface area and elemental composition of the composite was studied by using Brunauer–Emmett–Teller (BET) method and X-ray photoelectron spectroscopy. Photo-generated electrons were studied by photoluminescence spectra. The photocatalytic activity of nanocomposite was investigated by the degradation of Rhodamine-B (Rh-B) in an aqueous solution under solar light irradiation. The GR–TiO2 demonstrates photocatalytic activity in the degradation with a removal rate of 98% under solar light irradiation as compared with pure TiO2 (42%), graphite oxide (19%), and mechanical mixture GR + TiO2 (60%) due to the increased light absorption intensity and reduction of electron–hole pair recombination with the intercalation of graphene and TiO2. The results indicated that the GR–TiO2 could be used as a catalyst to degrade Rh-B from coloured wastewater.  相似文献   

7.

Herein, titanium dioxide (TiO2)-coated vertically aligned silicon nanowires (SiNWs/TiO2) were fabricated and evaluated for photocatalytic degradation of organic dyes. Aligned SiNWs arrays were prepared by facile metal-assisted chemical-etching process with varying the etching time that was followed by TiO2 nanoparticles coating using sputtering technique. The TiO2 film crystallized in pure anatase phase with an average crystalline size of 50 nm, as was elucidated with X-ray diffraction studies. SEM analysis showed nanowires with varying lengths from 2.5 to 13.5 µm and confirmed the homogenous surface decoration with TiO2. The homogeneous distribution of TiO2 nanoparticles on nanowires was co-evidenced with Energy-Dispersive X-ray spectroscopy (EDX) and Raman spectra analysis. The developed SiNWs/TiO2 was exploited for photocatalytic degradation of methylene blue; the role of hydrogen peroxide was also elucidated. The highest photocatalytic efficiency of 96% was achieved for SiNWs/TiO2 with optimum nanowire length of 3.5 μm. The developed photocatalyst was found to be almost stable even after 190 days (~?5 months) and could be used as reusable and easily removable photocatalysts. The current study highlighted the SiNWs/TiO2/H2O2 system as excellent candidate for water remediation applications.

  相似文献   

8.
High sensitive resistive type humidity sensor based titanium oxide/polyaniline (TiO2/PANI) nanocomposite thin films prepared by a sol–gel spin coating technique on an alumina substrate. The resultant nanocomposites were characterized by using X-ray diffraction (XRD), Field emission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV–Vis absorbance and energy dispersive spectra analysis. In the XRD patterns of both pure and TiO2/PANI composite confirms the deposition of PANI on TiO2 and the average size of the composite particle was found to be 32 nm. Large number of nano grain surface being covered by PANI, which agrees very well with the results obtained by XRD studies. FTIR and UV–Vis spectra reveal that the PANI component undergoes an electronic structure modification as a result of the TiO2 and PANI interaction. The room temperature resistivity was found to be for TiO2 and TiO2/PANI nanocomposite films 1.42?×?106 and 2.56?×?103 Ω cm respectively. The obtained TiO2/PANI nanocomposites sensor exhibited higher humidity sensing performance such as high sensitivity, fast response (20 s) and recovery time (15 s) and high stability.  相似文献   

9.
A novel titanium dioxide nanocarrier was synthesized for targeted delivery of the anticancer drug, paclitaxel, by grafting folic acid (FA) onto the PEGylated titanium dioxide nanoparticles. Titanium dioxide is used in biomedical field for its stability and no toxicity characteristics. Titanium dioxide is one of the most promising nanoparticles (NPs) capable of a wide variety of applications in medicine and life science. Polyethylene glycol (PEG), when attached to the surface of the nanoparticles, increases the biocompatibility of the nanoparticles. PEGylated nanocarriers evade the reticuloendothelial system (RES). Folic acid (FA) is used as the ligand to target folate receptors, which are found abundant in cancer cells. FA–PEG–TiO2 nanoparticles when used as drug carriers have the ability to target cancer cells and also capable of evading the reticuloendothelial system. Titanium dioxide nanoparticles were synthesized by wet chemical method. It was annealed at 450° for 3 h. XRD analysis confirms the formation of anatase titanium dioxide. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the nanoparticles had an average size of 12 nm and uniform size distribution. The PEGylation and folic acid grafting was confirmed by UV spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The study on the loading of anticancer drug paclitaxel revealed that the titanium dioxide nanocarrier possessed a considerably higher adsorption capability. In addition, the in vitro release profile of paclitaxel from FA–PEG–TiO2 nanoparticles was characterized by an initial fast release followed by a sustained release phase.  相似文献   

10.
We have studied the phase transitions, morphology, and photocatalytic activity of titanium(IV) oxide–cerium(IV) oxide materials at Ce doping levels from 1 to 20 wt % and heat-treatment temperatures from 80 to 1150°C. The highest photocatalytic activity under illumination in the spectral range λ ≥ 670 nm is offered by mesoporous X-ray amorphous and multiphase (X-ray amorphous phase + anatase + rutile + CeO2) nanomaterials, whereas the two-phase materials (rutile + CeO2) have the lowest photocatalytic activity.  相似文献   

11.
《Materials Letters》2005,59(24-25):3115-3118
Titanium dioxide (TiO2) nano-fibers doped with Gd3+ were synthesized by two-step synthesis method. The formed fibers were visualized from transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results showed that the average diameter of the TiO2 nano-fibers was 60–80 nm and the length of fibers was in the range of 6–7 μm. The TiO2 nano-fibers doped with Gd3+ heat treated in glycerol solvent had smaller crystal size than those without heat treatment. However, the size of TiO2 nano-fibers decreased with increasing the heating temperature. The results obtained in the photocatalytic degradation of methyl orange indicated that the photocatalytic activity of the TiO2 nano-fibers doped with Gd3+ appeared a little reduction relative to that of TiO2 nanopowders.  相似文献   

12.
Nonstoichiometric Ti4O7 titanium oxide nanopowder consisting of isolated stable nanoparticles with an average size of 115 ± 30 nm has been prepared by two-step synthesis from metallic titanium and oxalic acid. The nanostructured precipitate obtained by reacting titanium and oxalic acid was reacted with flowing hydrogen at a temperature of 1170 K to give Ti4O7. The proposed method allows one to control the average size of titanium oxide nanoparticles.  相似文献   

13.
Silver/titanium dioxide (Ag/TiO2) core-shell nanowires were synthesized by direct coating of TiO2 shells on the surface of silver nanowires (AgNWs) through a simple sol-gel process. TEM image and EDX elemental analysis had confirmed the presence of TiO2 coating on the surface of AgNWs. The thickness of titanium dioxide coating was about 10 nm. These Ag/TiO2 core-shell nanowires showed good photocatalytic activities in the decomposition of methylene blue as a model organic dye in aqueous solution under UV light irradiation. Ag/TiO2 core-shell nanowires are potentially useful in photocatalytic applications.  相似文献   

14.
Titanium carbide (TiC) was prepared via one simple route by the reaction of metallic magnesium powders with titanium dioxide (TiO2) and potassium acetate (CH3COOK) in an autoclave at 600 °C and 8 h. Phase structure and morphology were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The results indicated that the product was cubic TiC, which consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA) and its photocatalysis. It had good thermal stability and oxidation resistance below 350 °C in air. In addition, we discovered that the cubic TiC powders exhibited photocatalytic activity in degradation of Rhodamine-B (RhB) under 500 W mercury lamp light irradiation.  相似文献   

15.
The synthesis of Sb–SnO2/TiO2 (SST) composites by assembling antimony-doped tin oxide (Sb–SnO2) nanoparticles on the surface of titanium dioxide (TiO2) is systematically investigated. X-ray diffraction data show that the SST composite materials with good crystallinity can be indexed as anatase TiO2 phase and cassiterite SnO2 phase. The scanning electron microscopy and transmission electron microscopy indicate that Sb–SnO2 particles with average diameter of 25 nm have been successfully coated on the surface of TiO2. In addition, the Ti–O–Sn band can be detected on the surface of TiO2 through Fourier translation infrared spectroscopy. The influences of pH, Sn/Ti mole ratio, hydrolysis temperature and calcination temperature on the electrical resistivity of the SST powders are studied. Under the optimum experimental conditions, the electrical resistivity of the composite conductive powders is 2.546 × 103 Ω cm. Therefore, the SST composite conductive powders are useful as conductive fillers for the application in antistatic materials.  相似文献   

16.
Laser technique application to polycrystalline silicon thin-film solar cell fabrication on glass substrates has received appreciable attention. In this paper, a laser-doping technique is developed for plasma-deposited amorphous silicon film. A process involving recrystallization, phosphorous diffusion and antireflection coating can be achieved simultaneously using the laser annealing process. The doping precursor, a phosphorous-doped titanium dioxide (TiO2) solution, is synthesized using a sol-gel method and spin-coated onto the sample. After laser irradiation, the polycrystalline silicon grain size was about 0.5∼1.0 μm with a carrier concentration of 2 × 1019 cm− 3 and electron mobility of 92.6 cm2/V s. The average polycrystalline silicon reflectance can be reduced to a value of 4.65% at wavelengths between 400 and 700 nm, indicating the upper TiO2 film of antireflection coating.  相似文献   

17.
Journal of Engineering Physics and Thermophysics - Characteristics of composite titanium dioxide and silicon dioxide nanoparticles with a structure of the core–shell type, synthesized by the...  相似文献   

18.
Substrate dipping in a composite sol–gel solution was used to prepare both smooth and rough thin films of titanium dioxide (TiO2) on commercial fiberglass. The deposition of a composite film was done in a beaker using a solution of titanium (IV) isopropoxide as the sol–gel precursor and cetyltrimethyl ammonium bromide as the surfactant. In order to establish a correlation between experimental conditions and the titanium oxide produced, as well as the film quality, the calcined samples were characterized using Raman spectroscopy, UV–vis spectrophotometry, scanning electron microscopy and atomic force microscopy. One of the most important results is that a 61-nm TiO2 film was obtained with a short immersion of fiberglass into the sol–gel without surfactant. In other cases, the deposited film consisted of a titanium precursor gel encapsulating micelles of surfactant. The gel films were converted to only the anatase phase by calcining them at 500 °C. The resulting films were crystalline and exhibited a uniform surface topography. In the present paper, it was found that the TiO2 films prepared from the sol–gel with a surfactant showed a granular microstructure, and are composed of irregular particles between 1.5 and 3 μm. Smooth TiO2 films could have useful optical and corrosion-protective properties and, on other hand, roughness on the TiO2 films can enhance the inherent photocatalytic activity.  相似文献   

19.
Reverse micelle and hydrolysis have been combined to synthesize composite nanoparticles consisting of anatase–titania photocatalytic shell and nickel ferrite magnetic core. The average particle size of the composite nanoparticles was in the range of 10–15 nm. The photocatalytic shell of titania is responsible for the photocatalytic and anti-microbial activity and nickel ferrite magnetic core is responsible for the magnetic behavior, studied by superconducting quantum interference device. The anatase TiO2 coated NiFe2O4 nanoparticles retains the magnetic characteristics of uncoated nanocrystalline nickel ferrites, superparamagnetism (absence of hysteresis, remanence and coercivity at 300 K) and non-saturation of magnetic moments at high field. The magnetic measurements results encourage their application as removable anti-microbial photocatalysts. Bacterial inactivation with UV light in the presence of titania-coated NiFe2O4 nanoparticles is faster than the action with UV light alone.  相似文献   

20.
Many recently developed applications are related to the photocatalytic behavior of semiconductive oxides. Among the different oxides, titanium dioxide (TiO2) is one of the most interesting due to its high photocatalytic efficiency towards a great number of reactions and to its hydrophilic properties. Aim of this work is the evaluation and comparison of the photocatalytic properties of different crystalline titanium dioxide films, directly grown on titanium substrates by surface anodization (eventually followed by thermal annealing) and by Pulsed Laser Deposition (PLD) on titanium and silicon substrates, followed by thermal annealing. The structure and morphology of the layers were characterized by Scanning Electron Microscopy and X-Ray Diffraction and photocatalytic tests on stearic acid mineralization were performed. Results showed that the PLD layers possess a higher photocatalytic efficiency than anodized titanium. This can be attributed to the microstructured/microporous morphology of the related surfaces. Instead, PLD TiO2 layers with a relatively high content of the rutile phase have a reduced photocatalytic efficiency with respect to mainly anatase containing layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号