首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the characterization of the hydroxy-diesel fueled compression ignition engine under dual fuel (DF) mode on a stationary modified engine. Hydroxy gas (HHO) is supplied along with diesel at three different flow rates of 0.25, 0.50, and 0.75 lpm. A significant reduction in emission parameters was obtained in carbon monoxide, unburnt hydrocarbon and smoke emission as ~58%, ~60%, and ~49%, respectively under the DF mode (at 0.75 lpm HHO and 10 kg load). However, a slight increment in nitrogen oxides (NOX) emission is observed due to the O2 contents in HHO gas. It increases the reaction temperature and results in increasing the NOX emission. The brake thermal efficiency and brake specific energy consumption also improved and found to be ~6.5% and ~6% at the optimized condition. Combustion analysis shows the rate of pressure rise increased due to quicker combustion and decreased combustion duration. A numerical simulation has been performed to optimize the engine load and HHO flow rate using the Hybrid Entropy-VIKOR technique. In addition, a good agreement has been found between simulation and experimental values for performance and emission parameters. The results can be further improved by optimizing the engine operating parameters, i.e., injection pressure, compression ratio, and injection timing in the near future. Overall it can be concluded the HHO can be considered as a prominent alternative fuel for the CI engine with increased efficiency and lower emissions.  相似文献   

2.
Research on and use of biodiesels for engines is growing continuously in the present era. Compression ignition (CI) engine performance for biodiesels of blends B20 from Acid oil, Mahua oil, and Castor oil is experimentally investigated. The engine performance analysis in the form of brake‐specific fuel consumption, brake‐specific energy consumption, brake thermal efficiency (BTE), exhaust gas temperature (EGT), and air fuel ratio are compared with diesel as base fuel. Emission characteristics like CO, CO2, NOx, and opacity are comparatively studied in detail for the considered biodiesels. The entire study is compared with the performance of engine when pure diesel is chosen as fuel. From the complete analysis it was observed that the BTE was higher for Acid oil and Mahua oil among the biodiesels used. And regarding CO emissions, Mahua oil showed lower effect than other biodiesels. Upto 6% increase in EGT of Mahua oil was obtained at no load and for other loads the percent reduced. For all the biodiesels the % enhancement in Co, CO2, and NOx was more than 60% at highest load compared with diesel.  相似文献   

3.
G.R. KannanR. Anand 《Energy》2011,36(3):1680-1687
Experiments were conducted on a single cylinder direct injection diesel engine using diesel, biodiesel and biodiesel-diesel-ethanol (diestrol) water micro emulsion fuels to investigate the performance, emission and combustion characteristics of the engine under different load conditions at a constant speed of 1500 rpm. The results indicated that biodiesel and micro emulsion fuels had a higher brake specific fuel consumption (BSFC) than that of diesel. A slight improvement in the brake specific energy consumption (BSEC) was observed for micro emulsion fuels. The brake thermal efficiency of biodiesel and micro emulsion fuels were comparable to that of diesel. The emission characteristics like carbon monoxide (CO), carbon dioxide (CO2), unburnt hydrocarbon (UHC), nitric oxide (NO) and smoke emissions for biodiesel and micro emulsion fuels were lower than diesel fuel at all load conditions. The cylinder gas pressure of micro emulsion fuels was lower than diesel at low loads but it became almost identical to diesel at medium and full load conditions. The heat release rate for micro emulsion fuels was higher than biodiesel and diesel fuels for all loads. Biodiesel showed shorter ignition delay for the entire load range and the longer ignition delay observed for micro emulsion fuels.  相似文献   

4.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

5.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

6.
The combustion, performance, and emissions of syngas (H2/CO) in a four-stroke, direct-injection, spark-ignition engine were experimentally investigated. The engine was operated at various speeds, ranging from 1500 to 2400 rev/min, with the throttle being held in the wide-open position. The start of fuel injection was fixed at 180° before the top dead center, and the ignition advance was set at the maximal brake torque. The air/fuel ratio was varied from the technically possible lowest excess air ratio (λ) to lean operation limits. The results indicated that a wider air/fuel operating ratio is possible with syngas with a very low coefficient of variation. The syngas produced a higher in-cylinder peak pressure and heat-release rate peak and faster combustion than for CNG. However, CNG produced a higher brake thermal efficiency (BTE) and lower brake specific fuel consumption (BSFC). The BTE and BSFC of the syngas were on par to those of CNG at higher speeds. For the syngas, the total hydrocarbon emission was negligible at all load conditions, and the carbon monoxide emission was negligible at higher loads and increased under lower load conditions. However, the emission of nitrogen oxides was higher at higher loads with syngas.  相似文献   

7.
An experimental study was conducted on a diesel engine fueled with ultra-low sulfur diesel (ULSD), palm methyl ester (PME), a blended fuel containing 50% by volume each of the ULSD and PME, and naturally aspirated hydrogen, at an engine speed of 1800 rev min−1 under five loads. Hydrogen was added to provide 10% and 20% of the total fuel energy. The following results are obtained with hydrogen addition. There is little change in peak in-cylinder pressure and peak heat release rate. The influence on fuel consumption and brake thermal efficiency is engine load and fuel dependent; being negative for the three liquid fuels at low engine loads but positive for ULSD and B50 and negligible for PME at medium-to-high loads. CO and CO2 emissions decrease. HC decreases at medium-to-high loads, but increases at low loads. NOx emission increases for PME only but NO2 increases for the three liquid fuels. Smoke opacity, particle mass and number concentrations are all reduced for the three liquid fuels.  相似文献   

8.
Compression ignition (CI) engines used in the transportation sector operates on fossil diesel and is one of the biggest causes of air pollution. Numerous studies were carried out over last two decades to substitute the fossil diesel with biofuels so that the net carbon dioxide (CO2) emission can be minimized. However, the engine performance with these fuel was sub-standard and there were many long-term issues. Therefore, many researchers inducted hydrogen along with the biofuels. The present study gives an outlook on the effect of hydrogen addition with biodiesel/vegetable oil from various sources in CI engine. Engine parameters (brake thermal efficiency, brake specific fuel consumption), combustion parameters (in-cylinder pressure and heat release rate) and emission parameters (unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions) were evaluated in detail. The results show that hydrogen induction in general improves the engine performance as compared to biodiesel/vegetable oil but it is similar/lower than diesel. Except NOx emissions all other emissions showed a decreasing trend with hydrogen addition. To counter this effect numerous after-treatment systems like selective catalytic reduction (SCR), exhaust gas recirculation (EGR), selective non-catalytic reduction system (SNCR) and non-selective catalytic reduction system (NSCR) were proposed by researchers which were also studied in this review.  相似文献   

9.
A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NOx emission over the speed range of 1500–5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O2 and CO2) were significantly lower than those of the gasoline emissions.  相似文献   

10.
Hydrogen-diesel dual fuel (HDDF) technology is one approach available to improve the performance and reduce carbon-based emissions of compression ignition (CI) engines. Unfortunately, when operated at partial and low loads, HDDF engine configurations suffer from poor fuel utilization, combustion efficiency and ignition delay. As partial load application is increasingly important to performance of hybrid power systems, this paper explores the use of oxygen enrichment to improve HDDF performance outside of conventional load applications.In this paper, a numerical model was first developed and validated for HDDF combustion using experimental data. This model was subsequently applied to study the influences of oxygen enrichment on engine performance and emission characteristics. Furthermore, the Exhaust Gas Recirculation (EGR) was implemented as a secondary control for NOx emission reduction. For this configuration the results showed that oxygen enrichment (between 21% and 27% by volume) into the intake manifold led to an improved combustion efficiency and reduced carbon-based emissions. The brake thermal efficiency (BTE) increased by 1.6% and the brake specific energy consumption decreased by 4%. Across the emissions spectrum, soot emission reduced by 72%, whereas NOx emission increased by 63% without using the EGR technique. By combining oxygen enrichment and EGR strategies, a considerable reduction of 79% in NOx and an increase of 2.6% in BTE was observed for the oxygen concentration of 27% and EGR rate of 24% compared to a conventional HDDF operation with 45% HES ratio.  相似文献   

11.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

12.
Vegetables oils are simplest route of biofuel utilization in direct injection compression ignition (DICI) engines however several operational and durability problems are encountered while using straight vegetable oils in CI engines due to their high viscosity and low volatility. Reduction of viscosity by blending or exhaust gas heating leads to savings in chemical processing cost incurred on transesterification. In this experimental study, performance, emission and combustion characteristics of Karanja oil blends (K10, K20, K50 and K100) with mineral diesel were investigated in unheated conditions in a direct injection CI engine at different engine loads and constant engine speed (1500 rpm) vis-à-vis baseline data from mineral diesel. Analysis of performance parameters such as brake specific fuel consumption (BSFC), thermal efficiency, and exhaust gas temperature; mass emissions of various gaseous pollutant species; combustion parameters such as in-cylinder pressure rise, instantaneous heat release and cumulative heat release etc. were carried out. Detailed combustion analysis revealed that the combustion duration increased significantly even with smaller concentration of Karanja oil in the fuel blend. HC, CO and Smoke emissions were found to decrease for 20–50% (v/v) Karanja oil content in the fuel blends.  相似文献   

13.
This paper investigated the role of emission characteristics of a diesel engine when ferrofluid blended with Caulerpa Racemosa oil methyl ester (CROME) is used as a fuel. The major problem areas for compression ignition (CI) engines are emissions. Nanofluid using magnetite was synthesized by reacting Iron II (FeCl2) and Iron III (FeCl3) in aqueous ammonia (H5NO) solution to form magnetite ferrofluid (Fe3O4). The fuel that was used in the CI engine was prepared comprising 98.7% [CROME], 1% [Fe3O4], and 0.3% [(CH3)3NOH] by volume. The results show that the CI engine works well and the power outputs are steady running with the biodiesel blends at different loads. The acquired information was studied and it was found that there was a decrease in hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx), sulfur dioxide (SO2), and smoke.  相似文献   

14.
An experimental investigation has been carried out to analyze the performance and emission characteristics of a compression ignition engine fuelled with Karanja oil and its blends (10%, 20%, 50% and 75%) vis-a-vis mineral diesel. The effect of temperature on the viscosity of Karanja oil has also been investigated. Fuel preheating in the experiments – for reducing viscosity of Karanja oil and blends has been done by a specially designed heat exchanger, which utilizes waste heat from exhaust gases. A series of engine tests, with and without preheating/pre-conditioning have been conducted using each of the above fuel blends for comparative performance evaluation. The performance parameters evaluated include thermal efficiency, brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and exhaust gas temperature whereas exhaust emissions include mass emissions of CO, HC, NO and smoke opacity. These parameters were evaluated in a single cylinder compression ignition engine typically used in agriculture sector of developing countries. The results of the experiment in each case were compared with baseline data of mineral diesel. Significant improvements have been observed in the performance parameters of the engine as well as exhaust emissions, when lower blends of Karanja oil were used with preheating and also without preheating. The gaseous emission of oxide of nitrogen from all blends with and with out preheating are lower than mineral diesel at all engine loads. Karanja oil blends with diesel (up to 50% v/v) without preheating as well as with preheating can replace diesel for operating the CI engines giving lower emissions and improved engine performance.  相似文献   

15.
The current research work focus on the utilization of hydrogen as a fuel in CI engine has been increased tremendously, since it is a zero-emission fuel. But higher self-ignition temperature than conventional fuel, makes to operate in dual fuel mode condition in CI engine. The diesel or biodiesel along with hydrogen in a CI engine results in the improvement in the performance but increase of NO. In order to minimize the NO emission, addition of ethanol with jamun B20 biodiesel blend (biodiesel-diesel-ethanol) and two ternary blends such as B20E05 and B20E10 are formed. In the present study, biodiesel along with H2 is admitted in the CI engine. Ethanol addition reduces combustion temperature and act as cetane improver for the biodiesel. This induces better combustion of the fuel and reduce NO. The biodiesel production from jamun seed is carried out through transesterification process. H2 of 4 lpm is allowed at the air inlet and jamun B20 blend is injected through the fuel injector. Improvement of brake thermal efficiency and increase in the NO are observed for the hydrogen with biodiesel operated CI engine. The performance and emission behaviors of CI engine done for the test samples. At full load condition (ternary blend) B20E05 assisted H2 shows the drastic reduction of NO emission of 8.2% than B20 assist H2 blend. In other hand emission like hydrocarbon, carbon monoxide and smoke opacity show a notable reduction for B20E05 blend assist H2 than other test sample fuel. The thermal efficiency is 30.98% for B20E05 assist H2 and it is 7.55% and 4.7% higher than B20 and B20E05 assist H2 blend respectively.  相似文献   

16.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

17.
Oxy-hydrogen gas (HHO) is a carbon-free fuel, which is produced by the water electrolysis process. It can be used as an alternative to hydrogen since the current global hydrogen production and storage may not meet the required demand for transportation applications. This research work investigates the engine behavior of a compression ignition (CI) engine operated in dual-fuel mode by inducting HHO as a primary fuel and injecting two different pilot fuels viz., diesel, and JME20 (a blend composed of 80% diesel with 20% Jatropha methyl ester) at optimized engine conditions. The results revealed that; heat release rate, brake thermal efficiency, exhaust gas temperature, and nitric oxide emission are found to be higher about 5.2%, 1.1%, 18.6%, and 19.6% respectively, while unburnt hydrocarbon, carbon monoxide, and smoke emissions are reduced by about 33.3%, 29.4%, and 18.7% respectively in Opt.JME20 + HHO operation compared to that of the baseline data at maximum load.  相似文献   

18.
This paper deals with experimental investigations of a homogeneous charge compression ignition (HCCI) engine using biogas as a primary fuel and diethyl ether (DEE) as an ignition improver. The biogas is inducted and DEE is injected into a single-cylinder engine. For each load condition, best brake thermal efficiency DEE flow rate is determined. The results obtained in this study are also compared with those of the available biogas-diesel dual-fuel and biogas spark ignition (SI) modes. From the results, it is found that biogas-DEE HCCI mode shows wider operating load range and higher brake thermal efficiency (BTE) at all loads as compared to those of biogas-diesel dual-fuel and biogas SI modes. In HCCI mode, at 4.52 bar BMEP, as compared to dual-fuel and SI modes, BTE shows an improvement of about 3.48 and 9.21% respectively. Also, nitric oxide (NO) and smoke emissions are extremely low, and carbon monoxide (CO) emission is below 0.4% by volume at best brake thermal efficiency points. Also, in general, in HCCI mode, hydrocarbon (HC) emissions are lower than that of biogas SI mode. Therefore, it is beneficial to use biogas-DEE HCCI mode while using biogas in internal combustion engines.  相似文献   

19.
According to the literature, there is in lack of a comprehensive study to compare the combustion, performance and emissions of a diesel engine using diesel, biodiesel and ethanol fuels (DBE) in the blended mode and fumigation mode under various engine speeds. This study was conducted to fill this knowledge gap by comparing the effect of blended, fumigation and combined fumigation + blended (F + B) modes on the combustion, performance and emissions of a diesel engine under a constant engine load (50% of full torque) with five engine speeds ranging from 1400 rpm to 2200 rpm. A constant overall fuel composition of 80% diesel, 5% biodiesel and 15% ethanol, by volume % (D80B5E15), was utilized to provide the same fuel for comparing the three fueling modes.According to the average results of five engine speeds, the blended mode has higher peak heat release rate (HRR), ignition delay (ID), brake thermal efficiency (BTE), brake specific nitrogen monoxide (BSNO) and brake specific nitrogen oxides (BSNOX), but lower duration of combustion (DOC), brake specific fuel consumption (BSFC), brake specific carbon dioxide (BSCO2), brake specific carbon monoxide (BSCO), brake specific hydrocarbon (BSHC), brake specific nitrogen dioxide (BSNO2), brake specific particulate matter (BSPM), total number concentration (TNC) and geometric mean diameter (GMD), and similar peak in-cylinder pressure compared to the fumigation mode. In addition, for almost all the parameters, results obtained in the F + B mode are in between those of the blended and fumigation modes. In regard to the effect of engine speed, the results reveal that the increase in engine speed causes reduction in peak in-cylinder pressure, BTE, BSHC, BSNOX, BSNO and BSNO2, but increase in peak HRR, ID, DOC, BSFC, BSCO2, BSPM and TNC, and similar BSCO and GMD for almost all the tested fueling modes. It can be inferred that the blended mode is the suitable fueling mode, compared with the fumigation mode, under the operating conditions investigated in this study.  相似文献   

20.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号