首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Star‐shaped polycaprolactone (stPCL)/chitosan composite hydrogel was fabricated by simply melt/solution blending between chitosan/dicarboxylic acid solution and melted stPCL, using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and N‐hydroxysuccinimide as conjugating agents to obtain a composite hydrogel. Here, stPCL and modified stPCL were investigated. The stPCL was modified to have a carboxyl‐terminated chain (stPCL‐COOH). The composite hydrogels were transparent. The network structure of the composite hydrogels was investigated. stPCL‐OH had no chemical bond to the chitosan network but stPCL‐COOH could co‐crosslink with the chitosan network. The porous structure and porosity of the composite hydrogels were similar to those of chitosan hydrogel. However, the hydrophobicity of stPCL resulted in a lower swelling ratio compared to chitosan hydrogel. The rheological analysis of the composite hydrogel exhibited a stable crosslinked network. Compression testing of the composite hydrogel obtained from stPCL‐COOH at a mole ratio of stPCL‐COOH and chitosan of 1:1 had optimum compressive mechanical properties comparable to chitosan hydrogel due to a synergistic effect of the flexibility in stPCL and the co‐crosslinking of stPCL‐COOH with the chitosan network. © 2020 Society of Chemical Industry  相似文献   

2.
A series of nanocomposite hydrogels based on polyvinyl alcohol containing 0–10 wt % of the organically modified montmorillonite clay were prepared by freezing‐thawing cyclic method. The morphology of the nanocomposite hydrogels was observed by the scanning electron microscopy technique. The structural properties were determined by measuring the network mesh size, crosslinking density, and average molecular weight of polymer chains between crosslinks. The swelling behavior and the effect of swelling medium temperature on the swelling kinetics and characteristics of the nanocomposite hydrogels were also investigated. The results showed that two structural characteristics i.e., network mesh size and average molecular weight of polymer chains between crosslinks have inverse dependence on the clay loading level in the nanocomposite hydrogel, while crosslinking density shows completely direct dependence. Swelling measurements demonstrated a linear relation between the degree of swelling and the square root of immersion time at all swelling medium temperatures. The results indicated that the swelling characteristics of the nanocomposite hydrogels including the equilibrium degree of weight and volume swelling and the equilibrium water content were decreased by increasing the quantity of the clay incorporated into the hydrogel as well as by decreasing the temperature of swelling medium. While, the time required to reach to the equilibrium condition, as another swelling characteristic of the hydrogels, exhibited a completely opposite behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

3.
Highly swellable hydrogels were produced by crosslinking of high molecular weight carboxymethylated chitosan (CmCHT) with poly(ethylene glycol) (PEG) oligomers. The hydrogel swelling capacity could be controlled via the crosslinking density and ranged from 900% to 5600%. The hydrogels showed good homogeneity with a high interconnected porosity in the swollen state and with nanodomains rich in CmCHT and others rich in PEG diglycidyl ether. Oscillatory frequency sweep analysis showed a storage modulus of 27 kPa for the hydrogel with the highest crosslinking density, which together with the exhibited enzyme degradability with lysozyme at 59 days indicate that these hydrogels have potential use in delivery systems or soft tissue regeneration. © 2017 Society of Chemical Industry  相似文献   

4.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

5.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

6.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

7.
To evaluate the efficiency of carboxymethylchitosan (CM‐chitosan)‐based hydrogels as barriers for reducing postsurgical adhesions, CM‐chitosan was synthesized to simplify the hydrogel‐making process, and the CM‐chitosan solutions were cross‐linked by using γ‐ray irradiation to create the desired hydrogels instead of using chemical cross‐linking reagents. The prepared CM‐chitosan hydrogels were characterized by a FTIR spectroscopy, swelling behavior, gel‐fraction content,and mechanical property such as gel strength of a hydrogel and the results showed a good swelling behavior and mechanical properties. Also, the radiation‐induced CM‐chitosan hydrogels significantly reduced and inhibited the postsurgical adhesions in the rat models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A stimuli‐responsive porous hydrogel was synthesized from wheat straw hemicellulose using CaCO3 as the porogen, and its application for the removal of methylene blue was studied. The porous structure of the prepared hydrogel was confirmed by SEM analysis. The effects of pH and polyelectrolyte on the swelling of the hydrogels were discussed, and the porous hydrogels showed excellent sensitivity to pH and salt. The deswelling kinetic study indicated that the hydrogels exhibited rapid shrinking in NaCl aqueous solutions. The methylene blue adsorption on the hydrogels was investigated, and the obtained adsorption data was fitted to the pseudo‐first‐order, pseudo‐second‐order and intra‐particle diffusion kinetics models, and the pseudo‐first‐order kinetic model could describe the adsorption process, and the adsorption process of methylene blue on the hydrogels was controlled by external film diffusion. This study reported that the hemicellulose‐based porous hydrogel is promising for water treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41606.  相似文献   

9.
The effect of a chitosan-modified nanoclay (CMNC) on the physical, mechanical, and antimicrobial properties of poly(vinyl alcohol) (PVA) hydrogels prepared by the electron beam irradiation method is reported in comparison with pristine nanoclay (PNC). The X-ray diffraction (XRD) results confirm that the chitosan modification process of nanoclay led to an enhancement in the clay gallery spacing. The inclusion of nanoclays in the PVA matrix decreased the gel content while it increased the swelling degree of the hydrogels. Both PNC and CMNC played a role, depending on their amounts, in swelling of the hydrogel. The swelling kinetic studies revealed a diffusion-controlled swelling process. The diffusion coefficient of water molecules in hydrogels was decreased in the presence of PNC, while it increased with CMNC. Rheological investigations verified the influential role of nanoclays in decreasing the chemical crosslink density of the hydrogel. CMNC exhibited a higher reinforcing effect on hydrogel mechanical properties than PNC did, although the rheological analysis, in agreement with the XRD results, indicated a better dispersion of PNC in the PVA matrix. According to the antimicrobial tests, perfect inhibition of bacteria growth was obtained only for the hydrogels with CMNC. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47444.  相似文献   

10.
BACKGROUND: Blended hydrogels are widely applied in medical fields. They can provide many advantages, such as biocompatibility and biodegradability. Many materials and methods are used to obtain blended hydrogels. In this work, carboxymethyl chitosan (CMCS) and poly(vinyl alcohol) (PVA) blended hydrogels were prepared using the freezing and thawing technique. The properties of the hydrogels prepared, i.e. gel fraction, swelling and pH‐responsive behaviors, were investigated. RESULTS: The gel fraction increased with increasing time of freezing and thawing as determined through gravimetric analysis. It was also found that the equilibrium degree of swelling improved obviously due to the addition of CMCS compared to pure PVA hydrogel. The blended hydrogel with composition CMCS/PVA 80/20 (by weight) possessed the highest swelling ratio. The results of the influence of pH values on the swelling behavior showed that minimum swelling ratios of the hydrogels occurred near the isoelectric point of CMCS. Protein release studies were performed under various pH conditions: the release was much slower under acid than under basic conditions. The release showed a burst in the first 15 h and then steadily increased. CONCLUSION: The addition of CMCS can improve the physical properties of pure PVA hydrogels and provide pH sensitivity. It is concluded that PVA hydrogels containing CMCS could be potentially applied as oral delivery systems for protein drugs. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
In order to develop a potential drug sustained delivery carrier suitable for wound healing, a series of β‐cyclodextrin conjugated hyaluronan hydrogels (β‐CD‐HA) with adjustable crosslink densities were synthesized and characterized, meanwhile the delivery kinetics and mechanism of diclofenac as a model anti‐inflammatory drug from these hydrogels were investigated. By controlling the feeding molar ratio of β‐CD/HA, a β‐CD substitution degree of 4.65% was obtained by 1H‐NMR analysis. The incorporation of β‐CD modification had little effect on the internal porous structure, water swelling ratio, and rheological property of HA hydrogel, which however were influenced by the crosslink density. Although the crosslink density had an influence on the drug loading and release profile by altering the water swelling property, the interaction between β‐CD and drug was the primary factor for the high loading capacity and long‐term sustained delivery of diclofenac. The semiempirical equation fit showed that the release of diclofenac from HA‐based hydrogels followed a pseudo‐Fickian diffusion mechanism. By the aid of β‐CD and controlled crosslink density, a β‐CD‐HA hydrogel with a diclofenac sustained delivery period of over 28 days and desirable physicochemical properties was achieved, which will be a promising drug sustained delivery carrier for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43072.  相似文献   

12.
Chitosan‐based hydrogels are considered as promising biomaterials for tissue engineering. Biological properties of chitosan could be significantly improved by modification of its chemical structure. This study was aimed at characterizing macroporous hydrogels fabricated by freeze‐drying technique from chitosan, which has been N‐acetylated by 2,2‐bis(hydroxymethyl)propionic acid or l ,d ‐lactide. The nature of the acetylated agent was shown to significantly affect hydrogels morphology, swelling behavior, zeta‐potential, and protein sorption as well as their degradation by lysozyme. According to scanning electron and confocal laser scanning microscopy, the hydrogels possessed interconnected macroporous network that facilitated cells penetration into the interior regions of the hydrogel. Chemical modification of chitosan significantly influenced L929 cell growth behavior on hydrogel compared to the non‐modified chitosan. The proposed chemical strategy for modification of chitosan could be considered as promising approach for improvement of chitosan hydrogels. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44651.  相似文献   

13.
In order to establish a dual functional hydrogel, a special monomer, methacryloyloxy‐ethylene‐oxy‐carbonyl bis[4‐(phenyl‐isopropyl)phenyl]amine (MEOBiPA), was prepared from bis[4‐(phenyl‐isopropyl)phenyl]‐4‐cyanophenyl amine and 2‐hydroxyethyl methacrylate. Subsequently, a series of thermosensitive hydrogels was obtained through copolymerization of N‐isopropyl acrylamide (NIPAAm) with MEOBiPA by UV irradiation (named the NM series). The effect of MEOBiPA content on the swelling behavior, mechanical properties and drug release behavior of the hydrogels was further investigated. Results showed that the swelling ratios of the NM copolymeric hydrogels decreased from 4.73 to 1.74 g g?1 when the MEOBiPA content in the hydrogel increased from 0.1 to 0.9 mol%. Both gel strength and crosslinking density of the NM hydrogels increased with increasing MEOBiPA. Conversely, the thermosensitive behavior of NM hydrogels significantly decreased upon increase of MEOBiPA content. Likewise, the caffeine release ratio also decreased from 70% to 25%. Notably, the intensity of photoluminescence increased with increasing MEOBiPA content in the hydrogels. Further, the corresponding copolymers of the hydrogels were prepared using free radical polymerization. The UV absorbance and photoluminescent behavior of the MEOBiPA, NIPAAm/MEOBiPA copolymeric hydrogels and their corresponding copolymers in different polar solvents were also investigated. © 2015 Society of Chemical Industry  相似文献   

14.
A novel injectable in situ cross-linked hydrogel has been designed via Michael type addition between thiol-modified chitosan (CS-NAC) and PEG diacrylate (PEGDA). Hydrogel was rapidly formed in situ under physiological conditions. The gelation time depended on the content of free thiols in CS-NAC, temperature, and concentration of CS-NAC and PEGDA. Thermogravimetric analysis showed the thermal stabilities of hydrogels. SEM observation results confirmed a porous 3D structure. Rheological studies showed that the cross-linking density and elasticity of hydrogel had a correlation to the content of CS-NAC and PEGDA. Swelling studies revealed that these hydrogels had a high initial swelling and were degradable under physiological conditions. And swelling was highly temperature-dependent and was directly related to the amount of cross-linking. Biological activities of the hydrogels were evaluated by in vitro cell compatibility on HDFs and A549 cells and the results indicated that the hydrogel was biocompatible.  相似文献   

15.
Poly(N‐isopropylacrylamide) (PNIPA)/silica composite hydrogels were prepared and the effects of the silica incorporation on the swelling and breaking characteristics of the hydrogels were investigated. To improve the dispersive property of silica in the PNIPA matrix via the formation of covalent bonds between the polymer and silica, vinyl groups were introduced in the silica by reacting it with a coupling agent, 3‐methacryloxypropyltrimethoxysilane. When unmodified silica was used as filler in the PNIPA‐composite hydrogel, the swelling ratio of the composite hydrogel below the critical gel transition temperature (CGTT) increased with increasing silica content. However, when the modified silica was used as the filler, the swelling ratio below CGTT decreased with increasing silica content because of the enhanced distribution and additional crosslinking. Above CGTT, the swelling ratios of the PNIPA/silica hydrogels were similar regardless of the silica modification. The gel breaking stress of the hydrogels increased with increasing silica content, and this enhancement was larger for the modified silica hydrogel. Scanning electron microscopy images showed that the modified silica particles were distributed more evenly in the PNIPA matrix than the unmodified ones were and that the size of cell‐like structure of the hydrogel decreased with increasing modified silica content. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
Semi‐ and full‐interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and polyethyleneimine (PEI) were prepared to investigate the bending behavior under the electric response. To find out the characteristics of the hydrogel in the medium, swelling ratio, and rate and water state of the hydrogels were measured. The swelling ratio of the semi‐IPN hydrogels increased with PEI content in the matrix, whereas that of full‐IPN hydrogels dramatically decrease with increase of PEI contents in the hydrogels. In the water state of hydrogel, the bound water and free water of semi‐IPN hydrogels increased with PEI weight ratio. The full‐IPN hydrogels show the lower free water content in comparison with the semi‐IPN hydrogel. The IPN hydrogels exhibited bending angle change in response to external stimulus such as voltage, the bending angle increased with PEI concentration. In addition, the repeated bending behaviors according to the magnitude of the applied electric field revealed that the bending angle is reversible without collapse of formation of hydrogel in all samples. Thus, the hydrogels will be useful as novel modulation systems in the field of artificial organ and matrix for drug delivery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Vulnerability of hydrogels against thermal circumstances may be substantially eliminated via incorporating nanoclay to prepare nanocomposite hydrogels. In this research, chitosan‐intercalated montmorillonite (ChitoMMT) was used as a bionanoclay to yield novel nanocomposite hydrogels based on 2‐acrylamido‐2‐methylpropanesulfonic acid. The bionanoclay is suitable especially for preparing biomaterials used in biomedical, food, and pharmaceutical applications, unlike conventional commercial nanoclays (alkyl ammonium‐intercalated MMT) which are not appropriate for bio‐applications due to toxicity of the intercalant particularly where the clay content is high. Two different crosslinkers (i.e., methylene bisacrylamide, and polyethyleneglycol dimethacrylate) were employed to synthesize the nanocomposites. The variations in swelling, rheological and thermal properties of the hydrogels were essentially attributed to thermally induced crosslink cleavage/formation depending upon the crosslinker nature. The nanocomposites comprised superior thermal properties in comparison with the clay‐free hydrogel counterpart. They can preserve substantially their swelling ability for longer heating periods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

19.
从分子设计的角度出发,选用具有优良温敏性的N-异丙基丙烯酰胺(NIPA)为基本原料,制备了温度敏感水凝胶,系统研究了水凝胶的基本物理性能(密度、平均分子量、交联密度、平衡态水含量、固定电荷密度等),测试了水凝胶在不同离子强度下的溶胀、退溶胀性能,并对其响应机理进行了探讨,同时对水凝胶的机械性能进行了测试.结果表明:温度敏感水凝胶的溶胀受离子强度和温度的影响很大,离子强度越高,溶胀率越低;其机械强度随温度变化显著.  相似文献   

20.
Novel pH‐sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were prepared in two steps. Chitosan was first ionically crosslinked with itaconic acid, after which a free radical polymerization and crosslinking of the chitosan/itaconic acid network was performed by adding methacrylic acid and a crosslinker in order to achieve better mechanical properties and tunable swelling. The samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, dynamic mechanical analysis and the swelling ratios of the hydrogels at various pH values (2.0–8.0). The hydrogel composition is found to have a great impact on the hydrogel structure, mechanical and thermal properties, morphology and swelling kinetics. The highly porous morphology of the gels is probably connected with the bulky chitosan/itaconic acid network which reduces the degree of crosslinking in the second step of the synthesis due to steric hindrances. The gels demonstrate substantial change in buffer absorbency with change of pH, low for acid buffers and the higher for pH values above 6 where the swelling is considerably slow, thus suggesting their strong candidature for use as oral drug‐delivery systems in the lower parts of the gastrointestinal tract and for drugs that require longer release times. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号