首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

3.
Nanocomposites based on poly (n-butyl methacrylate) (PBMA) with various concentrations of titanium dioxide (TiO2) nanoparticles were synthesised by in situ free radical polymerisation method. The formation of nanocomposite was characterised by FTIR, UV, XRD, DSC, TGA, impedance analyser and flame retardancy measurements. FTIR and UV spectrum ascertained the intermolecular interaction between nanoparticles and the polymer chain. The XRD studies indicated that the amorphous region of PBMA decreased with the increase in content of metal oxide nanoparticles. The SEM revealed the uniform dispersion of nanoparticles in the polymer composite. The DSC and TGA studies showed that the glass transition temperature and thermal stability of the nanocomposites were increased with the increase in the concentration of nanoparticles. The conductivity and dielectric properties of nanocomposites were higher than pure PBMA and the maximum electrical property was observed for the sample with 7 wt% TiO2. As the concentration of nanoparticles increased above 7 wt%, the electrical property of nanocomposite was decreased owing to the agglomeration of nanoparticles in the polymer. Nanoparticles could impart better flame retardancy to PBMA/TiO2 composite and the flame resistance of the materials improved with the addition of nanoparticles in the polymer matrix.  相似文献   

4.
The polyaniline (PAn), polyaniline/titanium dioxide (PAn/TiO2), polyaniline/zinc oxide (PAn/ZnO), and a novel conducting polymer nanocomposites, polyaniline/titanium dioxide + zinc oxide (PAn/TiO2+ZnO), were synthesized by in situ electropolymerization and potential cycling on gold electrode. The PAn and nanocomposite films were characterized by cyclic voltammetry, Fourier transform infra‐red (FTIR) spectroscopy, in situ resistivity measurements, in situ UV–Visible, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The differences between cathodic and anodic peaks of three redox couples were obtained for PAn and polymeric nanocomposite films. During cathodic and anodic scans, the shift of potential was observed for polymer nanocomposite films. The characteristic FTIR peaks of PAn were found to shift to lower wavelengthsin polymer nanocomposite films. These observed effects have been attributed to interaction of TiO2, ZnO, and TiO2+ZnO particles with PAn molecular chains. Significant differences from in situ resistivity of PAn and nanocomposite films were obtained. The resistance of PAn/TiO2, PAn/ZnO, and PAn/TiO2+ZnO films were found to be smaller than the PAn film. The in situ UV–Visible spectra for Pan and polymer nanocomposite films were studied. The results show the intermediate spectroscopic properties between PAn and polymer nanocomposite films. The morphological analyses of PAn and nanocomposite films have been investigated. The nanocomposites SEM and TEM micrographs suggest that the inorganic semiconductor particles were incorporated in organic conducting polymer, which consequently modifies the morphology of the films significantly. POLYM. COMPOS., 35:351–363, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Films of poly(vinyl alcohol)/cadmium sulphide (PVA/CdS) nanocomposite containing various concentrations of Cd2+ ions were prepared using gamma radiation at different doses from 50 up to 200 kGy. The UV/VIS spectra revealed that the CdS/PVA nanocomposites showed blue shift for the absorption peak as compared with bulk CdS. As the irradiation dose increased, a gradual red shift in the wavelength accompanying with broadening of the absorption peak was observed. The estimated optical band gap energies and the calculated CdS particle sizes of (PVA/CdS) showed correlation between their values and the variable parameters (irradiation dose and Cd+2:S?2 molar ratio). Transmission electron microscopy images showed that the CdS/PVA nanocomposites were dispersed as spherical CdS nanoparticles with homogeneity at either lower concentration of CdCl2 or irradiation dose. The nano‐rod structures of CdS was accompanied with small agglomeration at either higher CdCl2 concentration or irradiation dose. A cubic phase and mixture of cubic and hexagonal phases of the prepared CdS nanoparticles were formed at lower and higher CdCl2 concentrations, respectively. Fourier Transform Infrared spectra confirmed the coordination of CdS nanoparticles with the hydroxyl groups of PVA matrix. POLYM. ENG. SCI., 55:2583–2590, 2015. © 2015 Society of Plastics Engineers  相似文献   

6.
In this study, nanocomposites of rigid poly(vinyl chloride) (UPVC) using the synthesized carbon‐coated titanium dioxide (TiO2) nanoparticles and commercial powder of titanium dioxide (with rutile structure) were prepared by melt blending. The presence of carbon‐coated TiO2 nanoparticles with rutile structure in UPVC matrix led to an improvement in photo stability of UPVC nanocomposites in comparison with commercial UPVC. The photocatalytic degradation behavior of nanocomposites was investigated by measuring their structural changes, surface tension, and mechanical and morphological properties before and after UV exposure for 700 h. It was found that mechanical and physical properties of UPVC nanocomposites are not considerably reduced after UV exposure in the presence of carbon‐coated TiO2 nanoparticles even in small percentage of nanoparticles in comparison with the presence of commercial TiO2 particles. Therefore, it can be concluded that UPVC/TiO2 nanocomposite with low content of carbon‐coated TiO2 nanoparticles(0.25 wt %) illustrated high stability under light exposure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40228.  相似文献   

7.
In the present investigation, at first, the surface of titanium dioxide (TiO2) nanoparticles was modified with γ-aminopropyltriethoxy silane as a coupling agent. Then a new kind of poly(vinyl alcohol)/titanium dioxide (PVA/TiO2) nanocomposites coating with different modified TiO2 loading were prepared under ultrasonic irradiation process. Finally, these nanocomposites coating were used for fabrication of PVA/TiO2 films via solution casting method. The resulting nanocomposites were fully characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis/derivative thermal gravimetric (TGA/DTG), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TEM and SEM results indicated that the surface modified nanoparticles were dispersed homogeneously in PVA matrix on nanoscale and based on obtained results a possible mechanism was proposed for ultrasonic induced nanocomposite fabrication. TGA confirmed that the heat stability of the nanocomposite was improved. UV–vis spectroscopy was employed to evaluate the absorbance and transmittance behavior of the PVA/TiO2 nanocomposite films in the wavelength range of 200–800 nm. The results showed that this type of films could be used as a coating to shield against UV light.  相似文献   

8.
《Ceramics International》2017,43(6):5351-5355
In this work, TiO2‒Ag nanocomposite thin films were fabricated for the first time via simultaneous plasma-enhanced chemical vapor deposition and physical vapor deposition of TiO2 and Ag nanoparticles in the gas-phase, respectively. The presence of Ag nanoparticles in the prepared nanocomposites has been confirmed using transmission electron microscopy and energy dispersive X-ray spectrometry techniques. The obtained electron microscopy images showed that the average size of TiO2‒Ag nanoparticles was larger than that of pristine TiO2. Moreover, the temperature of the anatase transformation into the rutile phase was decreased due to the presence of Ag nanoparticles in the TiO2 matrix, while the photocatalytic activity of the produced nanocomposite (estimated by studying the degradation of methylene blue aqueous solution under UV irradiation) was 35% greater than that of pristine TiO2. Therefore, the addition of Ag nanoparticles into the TiO2 matrix significantly affected the morphology, phase transformation temperature, and photocatalytic performance of the fabricated material.  相似文献   

9.
In this study, TiO2 nanoparticles were incorporated into low-density polyethylene by melt blending. Morphological properties and dispersion behavior of TiO2 nanocomposite were characterized through field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. Thermal stability of the nanocomposites was determined by thermogravimetric analysis. Moreover, the mechanical properties of nanocomposites were determined. Antimicrobial activity of TiO2 nanocomposites was investigated by in vitro test. Dispersion of the nanoparticles was good in nanocomposites. According to thermogravimetric analysis, incorporation of TiO2 nanoparticles into low-density polyethylene enhanced the thermal stability. Mechanical properties of nanocomposites were improved by TiO2 nanoparticles. Results showed that the antibacterial effect of low-density polyethylene –TiO2 nanocomposite was significantly enhanced by TiO2nanoparticles (p?2 nanoparticles not only can improve the properties of low-density polyethylene but they also have the potential to be used as an active food packaging film.  相似文献   

10.
Nanocomposites based on isotactic polypropylene (iPP) and titanium dioxide (TiO2) nanoparticle containing 1–15 vol% (4.6–45.5 wt%) of the nanoparticle were prepared by the melt blending process. The effect of an anhydride‐modified polypropylene as a compatibilizer on dispersion of TiO2 nanoparticles was assessed using SEM. TGA and DSC analysis were performed to study the thermal properties of the nanocomposites. Crystalline structures of iPP in the presence of TiO2 were analyzed by XRD. Mechanical properties of the nanoparticles were measured and a micromechanical analysis was applied to quantify interface interaction between the polymer and particle. SEM results revealed improvement of TiO2 particle dispersion by adding the compatibilizer. It was shown that the thermal stability and crystalline structure of the nanocomposite are significantly affected by the state of particle dispersion. TiO2 nanoparticles were shown to be strong β‐nucleating agents for iPP, especially at concentrations less than 5 vol%. Presence of the β‐structure crystals reduced the elastic modulus and yield strength of the nanocomposites. Micromechanical analysis showed enhanced interaction between organic and inorganic phases of the compatibilized nanocomposites. POLYM. ENG. SCI., 54:874–886, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
This paper highlights the effect of different concentrations of titanium dioxide (TiO2) nanoparticles on the electrical and optical properties of silk fibroin (SF). TiO2 based SF nanocomposite films were prepared using the solvent casting method. Uniform dispersion and agglomeration of nanoparticles, in nanocomposite films, were observed by field emission SEM. The conductivity of pure SF and nanocomposite films was determined by a four-point probe and the TiO2 nanoparticles were found to bring high conductivity to the nanocomposite films. Dielectric strength improved with the addition of nanoparticles to the SF matrix. Dielectric constant and capacitance of the pure SF and nanocomposite films were measured using an LCR meter, which showed a 10-fold enhancement on the addition of nanoparticles in SF. A very unusual property, i.e. negative resistance, was observed during LCR meter analysis for the nanocomposite films for a particular range of frequency (200–550 kHz), voltage (1 V) and current (0.5–1.5 μA). TiO2 nanoparticles changed the semiconducting behavior of the SF films from p-type to n-type as measured by the Hall effect experiment. The optical properties of pure SF and nanocomposite films were measured using a UV–visible spectrophotometer. The increased concentration of nanoparticles in the SF has effectively enhanced the absorbing coefficient, refractive index and percentage transmittance and reduced the bandgap energy. These SF/TiO2 nanocomposite films have shown the potential to be used as dielectric and high refractive index material for optoelectronics applications. © 2021 Society of Industrial Chemistry.  相似文献   

12.
In this work, nanocomposites (Ncs) from Pd nanoparticles and TiO2 (Pd-Nps-TiO2) were supported on a polystyrene matrix (PS). Chemical liquid deposition, solvated metal atom dispersion and in situ polymerization were used in order to synthesize these Ncs. Colloid and nanocomposite characterization were performed by TEM, SEM, EDX, SAED and TGA. TEM analysis revealed a particle size of 7 nm for Coll-Styrene and 11 nm for Pd-Nps supported on TiO2 after radical polymerization. SAED showed phases corresponding to both metallic Pd and TiO2 anatase in the polymeric matrix. Molecular weight (MW) was determined by viscosimetric method. MW varies according to the initiator concentration and nanoparticle amount used for polymerization. The amount of nanoparticles increased the decomposition temperature of the Ncs by 10 °C, improving the thermal stability of these hybrid materials. Photoacoustic properties were evaluated in order to determine the effect of nanoparticles on thermal diffusivity (α) inside the matrix. Significant values of (α) were found for Ncs with Pd-Nps in contrast to PS and Pd/TiO2 Ncs. Structural aspects and colloidal aggregation of Ncs were also studied.  相似文献   

13.
The role of nanoclays and TiO2 nanoparticle loadings were investigated on low density polyethylene crystalline structure, in addition to studying packaging film properties such as barrier, thermal and mechanical properties. The polymer crystal study indicated for the orthorhombic crystal phase and about 20% lower degree of crystallinity for nanocomposites containing more than 2 wt.% TiO2 nanoparticles. Based on the X-ray diffraction technique, the dispersion of nanoclays was improved to almost good degree of clay exfoliation with the company of 4 wt.% TiO2 nanoparticles. In agreement with XRD results, the TEM morphological studies mainly suggest that TiO2 has a helpful effect on nanoclay exfoliation. The increase in degradation temperature of nanocomposites may be attributed to the formation of inorganic char on polymer melt. The barrier properties of TiO2/clay nanocomposite packaging films depend mainly on nanoclay loading with an unclear trend from TiO2 nanoparticles. The increase in elastic modulus and the yield stress of nanocomposite films showed great effects on film mechanical properties by nanoclays.  相似文献   

14.
Polyaniline (PANi)–titanium dioxide (TiO2) nanocomposite materials were prepared by chemical polymerization of aniline doped with TiO2 nanoparticles. Surface pressure–area (π‐A) isotherms of these nanocomposites show phase transformations in the monolayer during compression process. Multiple isotherms indicate that the monolayer of the nanocomposite material can retain its configuration during compression‐expansion cycles. Langmuir–Blodgett thin films of PANi–TiO2 nanocomposite were deposited on the quartz and indium tin oxide coated conducting glass substrates. Fourier transfer infrared spectroscopy and UV–visible spectroscopy study indicates the presence of TiO2 in PANi, whereas X‐ray Diffraction study confirmed the anatase phase of TiO2 and particle size (~nm) of PANi–TiO2. The morphology of Langmuir–Blodgett films of these nanocomposites was also characterized by atomic force microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41386.  相似文献   

15.
A chemical grafting method was applied to modify TiO2 nanoparticles through covalently introducing glycidoxypropyltrimethoxy silicane (KH560) followed by polyoxymethylene onto the particles to overcome the disadvantages generated by the agglomeration of nanoparticles. TiO2 nanoparticles unmodified and modified were introduced into hybrid polytetrafluoroethylene (PTFE)/cotton fabric composites. Friction and wear test demonstrated that TiO2 nanoparticles unmodified and modified can significantly increase the wear resistance of hybrid PTFE/cotton fabric composites but cannot reduce the friction coefficient. Fabric composites filled with grafted TiO2 nanoparticles exhibited a lower wear rate due to the disintegration of agglomeration and the improvement of interfacial adhesion between filler/matrix. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Nowadays, nanocomposites are a special class of materials having unique physical properties and wide application potential in diverse areas. The present research work describes an efficient method for synthesis of a series of polypyrrole/titanium dioxide (PPy/TiO2) nanocomposites with different TiO2 ratios. These nanocomposites were prepared by one‐step in situ deposition oxidative polymerization of pyrrole hydrochloride using ferric chloride (FeCl3) as an oxidant in the presence of ultra fine grade powder of anatase TiO2 nanoparticles cooled in an ice bath. The obtained nanocomposites were characterized by Fourier‐transform infrared (FTIR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD), and scanning electron microscope (SEM) techniques. The obtained results showed that TiO2 nanoparticles have been encapsulated by PPy with a strong effect on the morphology of PPy/TiO2 nanocomposites. Also, the synthesized PPy/TiO2 nanocomposites had higher thermal stability than that of pure PPy. The investigation of electrical conductivity of nanocomposites by four‐point probe instrument showed that the conductivity of nanocomposite at low TiO2 content is much higher than of neat PPy, while with the increasing contents of TiO2, the conductivity decreases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

18.
Poly(vinyl chloride) (PVC)‐based nanocomposites containing 2 wt% zinc oxide (ZnO) nanoparticles were prepared by solution casting and the effect of the PVC molecular weight (MW) on the morphology, thermal properties, and thermogravimetric behavior was studied. The addition of ZnO nanoparticles to PVCs of different MWs increased the glass transition temperature (Tg) of the resulting nanocomposites, the extent of which was dependent upon the MW of the PVC matrix. The nanocomposite samples exhibited broadened transition zones as compared with their unfilled PVC matrices. The extent of transition zone broadening was also controlled by the MW of the PVC matrix in the nanocomposites. In the absence of ZnO nanoparticles, the increase in MW of PVC had no effect on the breadth of the transition zone. The TGA results showed that the incorporation of ZnO nanoparticles into PVC matrices of different MWs accelerated the first stage weight loss via the nanoparticle catalytic effect through removal of HCL from the polymeric chains. The presence of ZnO nanoparticles lowered the second stage weight loss, and the char yield obtained for nanocomposites samples was significantly greater than that obtained for neat PVC samples. At low MWs, the presence of ZnO nanoparticles had no effect on the first stage of thermal degradation process. The presence of ZnO nanoparticles in the matrix in different nanocomposites was revealed by SEM observations, and the EDX analysis demonstrated a progressive improvement in the distribution and dispersion state of ZnO nanoparticles in the PVC‐based nanocomposites as the MW of PVC matrix gradually increased. J. VINYL ADDIT. TECHNOL., 25:E63–E71, 2019. © 2018 Society of Plastics Engineers  相似文献   

19.
A novel hybrid-nanocomposite of polyacrylamide-TiO2 (PAM/TiO2) with nano-anatase particles was synthesized in two steps. Firstly, the surface of nano-anatase particles was modified by 3-methacryloxy-propyl-trimethoxysilane (TMSM) as coupling agent by sol?Cgel method. Secondly, the surface modified nano-anatase particles were grafted onto the acrylamide monomer (AM) as an organic phase by free radical polymerization. The spectral (Fourier transform Infrared spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and titanium dioxide (anatase) into the hybrid structure. The results also showed that the degradation temperatures and residual content were obviously higher in nanocomposite than those of pure polyacrylamide (PAM). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) studies proved that the nano-anatase particles have been uniformly encapsulated inside the nanocomposite sample containing 5wt% TiO2. However, the agglomeration of nano-particles in the nanocomposite with 20wt% of TiO2 was detected by atomic force microscopy (AFM) and dynamic mechanical thermal analysis (DMTA) studies. Thermo-mechanical properties of acrylamide homopolymer (PAM) and their nanocomposites were investigated by DMTA. The shifts in storage modulus and tan?? peaks were attributed to morphological changes in the nanocomposites with increasing the amount of inorganic nano-particles and their distribution in polymer matrix. Flocculation behavior of PAM and PAM/TiO2 in two different level of titanates (i.e. 5 and 20wt% TiO2) for 0.25wt% nano-clay suspension was evaluated using batch method. The adsorption results showed that PAM/TiO2 have ability for interaction with clay particles by means of adsorption through electrostatic interaction, Vander Waals forces and hydrogen bonding. However, it was found that the flocculation efficiency of the pure polymer (PAM) and the hybrid-nanocomposite (5wt% TiO2) is much better than that of its high concentration (20wt% TiO2) in the hybrid. This flocculation behavior can be attributed to uniform distribution of nano-particles and agglomeration possibility in the case of low and high concentration level of titanate in hybrid nanocomposite, respectively.  相似文献   

20.
A study of the nucleation effect of TiO2 in poly(trimethylene terephthalate)/TiO2 nanocomposite has been carried out using different theoretical models. The models were applied and developed with the aim to describe and better understand the influence of the TiO2 dispersion on crystallization characteristics of PTT. The PTT/TiO2 nanocomposites with untreated and surface‐treated TiO2 were prepared by the melt mixing method. The nucleation efficiency of the TiO2 nanoparticles has been analyzed with the use of the Avrami model and Mo's method. It was found that the PTT matrix incorporated with surface‐treated TiO2 particles has a higher crystallization temperature and melting point than that incorporated with untreated TiO2 particles. As per the models, unlike untreated TiO2, surface‐treated TiO2 particles had a lesser effect on the degree of crystallization of the PTT matrix. The TiO2 nanoparticles act as a nucleating agent in the PTT matrix thereby reducing t½ of the crystallization and leading to easier crystallization of the polymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号