首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shelf life and safety of minimally processed food are crucial for both consumers and the food industry. This study investigates the in vitro and in situ efficiency of electrospun chitosan‐based nanofibers (CNFs) as inner part of a multilayer packaging in maintaining the quality of unprocessed red meat. Activated CNF‐based packaging (CNFP) were obtained by direct electrospinning of chitosan/poly(ethylene oxide) solutions on top of a conventional multilayer food packaging. The electrospinning solutions were firstly characterized at the molecular level, mainly in terms of zeta potential and viscoelastic properties, and the evolution of the conformational structure was correlated to the nanofiber formation process. The oxygen and water vapor barrier properties of CNF‐based (CNFP) meat packaging were also investigated. The in vitro antibacterial activity of CNFs was determined against Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria innocua, bacteria commonly incriminated in the alteration of food products. The efficiency of the CNFP materials against meat spoilage by E. coli was also assessed. Our results indicate that the electrospinning of CS is a multifactorial process and fiber formation requires the choice of a good solvent, high electrical conductivity, moderate surface tension, optimum viscoelastic properties, and sufficient chain flexibility and entanglement. The results also indicate that all the tested bacterial strains were significantly sensitive to the action of CNFs. The in situ bioactivity against E. coli showed the potential of CNFP as bioactive nanomaterial barriers to meat contamination by extending the shelf life of fresh meat up to 1 week.  相似文献   

2.
3.
4.
5.
6.
Abstract: Vapour growth carbon nanofibres (CNF) and lead zirconate titanate (PZT) piezoelectric particles were added in the matrix of carbon fibre‐reinforced polymer laminates. The fracture toughness of the modified composites was measured under mode I and mode II loading and compared with plain epoxy carbon fibre‐reinforced composites. The mode I fracture toughness of the composites improved with the incorporation of the carbon nanofibres and deteriorated with the incorporation of PZT piezoelectric particles. When both fillers were added in the composite matrix, the mode I fracture toughness improved but to a lesser extend. The mode II fracture toughness of the modified composites was improved in all three cases. The aforementioned behaviour was attributed to competing fracture mechanisms instigated by the different fillers, and backed by fractographic evidence from the failed composite coupons; during the tests, the acoustic emission activity of the coupons was monitored and classified in three major energy absorbing mechanisms which were attributed to the failure of distinct composite phases.  相似文献   

7.
In this work, the carboxymethyl chitosan (CMCTS) grafted poly(N‐vinylpyrrolidone) (PVP) copolymers were synthesized. The hydrogel beads containing VB2 were prepared from the copolymers by an ionic crosslinked. The experimental results shown that VB2 drug release rate from those beads decreased with the increasing grafting percentage, crosslinker concentration and pH value of the medium. Besides, the beads have the better control ability for releasing of model drug than CMCTS does.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Abstract: Asymmetric laminates are known to exhibit two stable cylindrical states and one unstable saddle state. Such bistability has attracted attention in aerospace applications because of the potential low energy requirement to achieve a large deflection or change in shape. This paper presents experimental observations of a generic asymmetric [?30/60] laminate with and without piezoelectric actuation and compares against both energy‐based analytical and finite element (FE) models. It is observed that the analytical model offers a qualitative understanding of bistable behaviour, degree of curvature and overall shape but is unable to model the distinctive curvature changes near the boundaries which can be captured by the FE model. The investigation also presents the use of piezoelectric actuation to achieve snap‐through in both analytical and FE models, which is compared and validated with experimental characterisation.  相似文献   

15.
16.
Abstract: In this work, the combined effect of indentation damage and of manufacturing defects of a hybrid laminate including jute hessian cloth (plain weave) and hemp fibres in an epoxy matrix has been investigated. With this aim, various non‐destructive evaluation (NDE) techniques have been employed, such as near‐infrared (NIR) reflectography, infrared thermography (IRT), holographic interferometry (HI) and digital speckle photography (DSP). In particular, two different methods of heating were applied during IRT data collection: pulse thermography and square pulse thermography (SPT). The first one using a mid‐wave infrared (IR) camera, while the second one using a long‐wave IR camera. In the same way, two different cameras working into the near‐ and short‐wave IR spectra were used, to compare different results from 0.74 to 14 μm. Data were processed applying principal component thermography (PCT), correlation and the robust second‐order blind identification (SOBI‐RO) algorithms. The latter is used for the first time to our knowledge in this work. The defects found were enhanced by image subtraction between the reflectogram and the transmittogram, distance transform and image fusion. In particular, data fusion from IRT and DPS images allowed clearly defining the extension of the indentation damage.  相似文献   

17.
18.
19.
In this study, two novel chitosan‐graft‐poly(vinyl alcohol) copolymers are synthesized and used as water‐soluble at physiological conditions polycations for preparation of smart microcapsules. The microcapsules provide growth and proliferation of eight mammalian cell lines, including hybridoma and tumor cells, at long‐term cell cultivation in vitro. The microcapsules are stable in cell culture medium but can be dissolved by changing pH value of the medium (up to 8.0–8.2), thus making possible a simple release of the entrapped cells. Monoclonal antibody production by encapsulated hybridoma cells is demonstrated. Cultivation of tumor cells within the microcapsules allows the formation of 3D multicellular spheroids, which can be proposed as an in vitro model for anticancer drug screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号