首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several new solution‐processable organic semiconductors based on dendritic oligoquinolines were synthesized and were used as electron‐transport and hole‐blocking materials to realize highly efficient blue phosphorescent organic light‐emitting diodes (PhOLEDs). Various substitutions on the quinoline rings while keeping the central meta‐linked tris(quinolin‐2‐yl)benzene gave electron transport materials that combined wide energy gap (>3.3 eV), moderate electron affinity (2.55‐2.8 eV), and deep HOMO energy level (<‐6.08 eV) with electron mobility as high as 3.3 × 10?3 cm2 V?1 s?1. Polymer‐based PhOLEDs with iridium (III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic) blue triplet emitter and solution‐processed oligoquinolines as the electron‐transport layers (ETLs) gave luminous efficiency of 30.5 cd A?1 at a brightness of 4130 cd m?2 with an external quantum efficiency (EQE) of 16.0%. Blue PhOLEDs incorporating solution‐deposited ETLs were over two‐fold more efficient than those containing vacuum‐deposited ETLs. Atomic force microscopy imaging shows that the solution‐deposited oligoquinoline ETLs formed vertically oriented nanopillars and rough surfaces that enable good ETL/cathode contacts, eliminating the need for cathode interfacial materials (LiF, CsF). These solution‐processed blue PhOLEDs have the highest performance observed to date in polymer‐based blue PhOLEDs.  相似文献   

2.
A study of hybrid light‐emitting diodes (HyLEDs) fabricated with and without solution‐processible Cs2CO3 and Ba(OH)2 inorganic interlayers is presented. The interlayers are deposited between a zinc oxide electron‐injection layer and a fluorescent emissive polymer poly(9‐dioctyl fluorine–alt‐benzothiadiazole) (F8BT) layer, with a thermally evaporated MoO3/Au layer used as top anode contact. In comparison to Cs2CO3, the Ba(OH)2 interlayer shows improved charge carrier balance in bipolar devices and reduced exciton quenching in photoluminance studies at the ZnO/Ba(OH)2/F8BT interface compared to the Cs2CO3 interlayer. A luminance efficiency of ≈28 cd A?1 (external quantum efficiency (EQE) ≈ 9%) is achieved for ≈1.2 μm thick single F8BT layer based HyLEDs. Enhanced out‐coupling with the aid of a hemispherical lens allows further efficiency improvement by a factor of 1.7, increasing the luminance efficiency to ≈47cd A?1, corresponding to an EQE of 15%. The photovoltaic response of these structures is also studied to gain an insight into the effects of interfacial properties on the photoinduced charge generation and back‐recombination, which reveal that Ba(OH)2 acts as better hole blocking layer than the Cs2CO3 interlayer.  相似文献   

3.
Grafting six fluorene units to a benzene ring generates a new highly twisted core of hexakis(fluoren‐2‐yl)benzene. Based on the new core, six‐arm star‐shaped oligofluorenes from the first generation T1 to third generation T3 are constructed. Their thermal, photophysical, and electrochemical properties are studied, and the relationship between the structures and properties is discussed. Simple double‐layer electroluminescence (EL) devices using T1–T3 as non‐doped solution‐processed emitters display deep‐blue emissions with Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.08) for T1 , (0.16, 0.08) for T2 , and (0.16, 0.07) for T3 . These devices exhibit excellent performance, with maximum current efficiency of up to 5.4 cd A?1, and maximum external quantum efficiency of up to 6.8%, which is the highest efficiency for non‐doped solution‐processed deep‐blue organic light‐emitting diodes (OLEDs) based on starburst oligofluorenes, and is even comparable with other solution‐processed deep‐blue fluorescent OLEDs. Furthermore, T2‐ and T3‐ based devices show striking blue EL color stability independent of driving voltage. In addition, using T0–T3 as hole‐transporting materials, the devices of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS)/ T0–T3 /tris(8‐hydroxyquinolinato)aluminium (Alq3)/LiF/Al achieve maximum current efficiencies of 5.51–6.62 cd A?1, which are among the highest for hole‐transporting materials in identical device structure.  相似文献   

4.
Blue fluorescent materials based on silicone end‐capped 2‐diphenylaminofluorene derivatives are synthesized and characterized. These materials are doped into a 2‐methyl‐9,10‐di‐[2‐naphthyl]anthracene host as blue dopant materials in the emitting layer of organic light‐emitting diode devices bearing a structure of ITO/DNTPD (60 nm)/NPB (30 nm)/emitting layer (30 nm)/Alq3 (20 nm)/LiF (1.0 nm)/Al (200 nm). All devices exhibit highly efficient blue electroluminescence with high external quantum efficiencies (3.47%–7.34% at 20 mA cm?2). The best luminous efficiency of 11.2 cd A?1 and highest quantum efficiency of 7.34% at 20 mA cm?2 are obtained in a device with CIE coordinates (0.15, 0.25). A deep‐blue OLED with CIE coordinates (0.15, 0.14) exhibits a luminous efficiency of 3.70 cd A?1 and quantum efficiency of 3.47% at 20 mA cm?2.  相似文献   

5.
An efficient inverted polymer solar cell is enabled by incorporating an n-type doped wide-gap organic electron transporting layer (ETL) between the indium tin oxide cathode and the photoactive layer for electron extraction. The ETL is formed by a thermal-deposited cesium carbonate-doped 4,7-diphenyl-1,10-phenanthroline (Cs2CO3:BPhen) layer. The cell response parameters critically depended on the doping concentration and film thickness of the Cs2CO3:BPhen ETL. Inverted polymer solar cell with an optimized Cs2CO3:BPhen ETL exhibits a power conversion efficiency of 4.12% as compared to 1.34% for the device with a pristine BPhen ETL. The enhanced performance in the inverted device is associated with the favorable energy level alignment between Cs2CO3:BPhen and the electron-acceptor material, as well as increased conductivity in the doped organic ETL for electron extraction. The method reported here provides a facile approach to optimize the performance of inverted polymer solar cells in terms of easy control of film morphology, chemical composition, conductivity at low processing temperature, as well as compatibility with fabrication on flexible substrates.  相似文献   

6.
Nanostructured layers of Cs2CO3 are shown to function very effectively as cathodes in organic electronic devices because of their good electron‐injection capabilities. Here, we report a comprehensive study of the origin of the low work function of nanostructured layers of Cs2CO3 prepared by solution deposition and thermal evaporation. The nanoscale Cs2CO3 layers are probed by various characterization methods including current–voltage (I–V) measurements, photovoltaic studies, X‐ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS), and impedance spectroscopy. It is found that thermally evaporated Cs2CO3 decomposes into CsO2 and cesium suboxides. The cesium suboxides dope CsO2, yielding a heavily doped n‐type semiconductor with an intrinsically low work function. As a result, devices fabricated using thermally evaporated Cs2CO3 are relatively insensitive to the choice of the cathode metal. The reaction of thermally evaporated Cs2CO3 with Al can further reduce the work function to 2.1 eV by forming an Al–O–Cs complex. Solution‐processed Cs2CO3 also reduces the work function of Au substrates from 5.1 to 3.5 eV. However, devices prepared using solution‐processed Cs2CO3 exhibit high efficiency only if a reactive metal such as Al or Ca is used as the cathode metal. A strong chemical reaction occurs between spin‐coated Cs2CO3 and thermally evaporated Al. An Al–O—Cs complex is formed as a result of this chemical reaction at the interface, and this layer significantly reduces the work function of the cathode. Finally, impedance spectroscopy results prove that this layer is highly conductive.  相似文献   

7.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

8.
Four monodisperse starburst oligomers bearing a 4,4′,4″‐tris(carbazol‐9‐yl)‐triphenylamine (TCTA) core and six oligofluorene arms are synthesized and characterized. The lengths of oligofluorene arms vary from one to four fluorene units, giving the starburst oligomers molecular weights ranging from 3072 to 10 068 Da (1 Da = 1.66 × 10–27 kg). All of the starburst oligomers have good film‐forming capabilities, and display bright, deep‐blue fluorescence (λmax = 395–416 nm) both in solution and in the solid state, with the quantum efficiencies of the films (ΦPL) varying between 27 and 88 %. Electrochemical studies demonstrate that these materials have large energy gaps, and are stable for both p‐doping and n‐doping processes. Electroluminescent devices are successfully fabricated using these materials as hole‐transporting emitters, and emit deep‐blue light. Devices with luminance values up to 1025 cd m–2 at 11 V and luminous efficiencies of 0.47 cd A–1 at 100 cd m–2 have been produced, which translates to an external quantum efficiency of 1.4 %. In addition, these large‐energy‐gap starburst oligomers are good host materials for red electrophosphorescence. The luminance of the red electrophosphorescent devices is as high as 4452 cd m–2, with a luminous efficiency of 4.31 cd A–1 at 15 mA cm–2: This value is much higher than those obtained from the commonly used hole‐transporting materials, such as poly(vinyl carbazole) (PVK) (1.10 cd A–1 at 16 mA cm–2).  相似文献   

9.
A series of novel red‐emitting iridium dendrimers functionalized with oligocarbazole host dendrons up to the third generation ( red‐G3 ) have been synthesized by a convergent method, and their photophysical, electrochemical, and electroluminescent properties have been investigated. In addition to controlling the intermolecular interactions, oligocarbazole‐based dendrons could also participate in the electrochemical and charge‐transporting process. As a result, highly efficient electrophosphorescent devices can be fabricated by spin‐coating from chlorobenzene solution in different device configurations. The maximum external quantum efficiency (EQE) based on the non‐doped device configuration increases monotonically with increasing dendron generation. An EQE as high as 6.3% was obtained as for the third generation dendrimer red‐G3 , which is about 30 times higher than that of the prototype red‐G0 . Further optimization of the device configuration gave an EQE of 11.8% (13.0 cd A?1, 7.2 lm W?1) at 100 cd m?2 with CIE coordinates of (0.65, 0.35). The state‐of‐the‐art performance indicated the potential of these oligocarbazole‐based red iridium dendrimers as solution processible emissive materials for organic light‐emitting diode applications.  相似文献   

10.
The rate‐limiting step of charge generation in charge‐generation units (CGUs) composed of a p‐doped hole‐transporting layer (p‐HTL), 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HATCN) and n‐doped electron‐transporting layer (n‐ETL), where 1,1‐bis‐(4‐bis(4‐methyl‐phenyl)‐amino‐phenyl)‐cyclohexane (TAPC) was used as the HTL is reported. Energy level alignment determined by the capacitance–voltage (CV) measurements and the current density–voltage characteristics of the structure clearly show that the electron injection at the HATCN/n‐ETL junction limits the charge generation in the CGUs rather than charge generation itself at the p‐HTL/HATCN junction. Consequently, the CGUs with 30 mol% Rb2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) formed with the HATCN layer generates charges very efficiently and the excess voltage required to generate the current density of ±10 mA cm?2 is around 0.17 V, which is extremely small compared with the literature values reported to date.  相似文献   

11.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

12.
The cover shows the structure of an efficient polymer light emitting diode (PLED) and its energy diagram at the interface between aluminum (Al) and a Cs2CO3 interfacial layer. It reveals the origin of enhanced electron injection from the Al electrode due to the low work function of a thermally evaporated Cs2CO3 layer, as reported on p. 1966 by Jinsong Huang, Zhen Xu, and Yang Yang. Pictures of the white‐ and red‐emitting PLEDs are also shown. Nanostructured layers of Cs2CO3 are shown to function very effectively as cathodes in organic electronic devices because of their good electron‐injection capabilities. Here, we report a comprehensive study of the origin of the low work function of nanostructured layers of Cs2CO3 prepared by solution deposition and thermal evaporation. The nanoscale Cs2CO3 layers are probed by various characterization methods including current–voltage (I–V) measurements, photovoltaic studies, X‐ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS), and impedance spectroscopy. It is found that thermally evaporated Cs2CO3 decomposes into CsO2 and cesium suboxides. The cesium suboxides dope CsO2, yielding a heavily doped n‐type semiconductor with an intrinsically low work function. As a result, devices fabricated using thermally evaporated Cs2CO3 are relatively insensitive to the choice of the cathode metal. The reaction of thermally evaporated Cs2CO3 with Al can further reduce the work function to 2.1 eV by forming an Al–O–Cs complex. Solution‐processed Cs2CO3 also reduces the work function of Au substrates from 5.1 to 3.5 eV. However, devices prepared using solution‐processed Cs2CO3 exhibit high efficiency only if a reactive metal such as Al or Ca is used as the cathode metal. A strong chemical reaction occurs between spin‐coated Cs2CO3 and thermally evaporated Al. An Al–O—Cs complex is formed as a result of this chemical reaction at the interface, and this layer significantly reduces the work function of the cathode. Finally, impedance spectroscopy results prove that this layer is highly conductive.  相似文献   

13.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

14.
Green‐emitting iridium dendrimers with rigid hole‐transporting carbazole dendrons are designed, synthesized, and investigated. With second‐generation dendrons, the photoluminescence quantum yield of the dendrimers is up to 87 % in solution and 45 % in a film. High‐quality films of the dendrimers are fabricated by spin‐coating, producing highly efficient, non‐doped electrophosphorescent organic light‐emitting diodes (OLEDs). With a device structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/neat dendrimer/1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene/LiF/Al, a maximum external quantum efficiency (EQE) of 10.3 % and a maximum luminous efficiency of 34.7 cd A–1 are realized. By doping the dendrimers into a carbazole‐based host, the maximum EQE can be further increased to 16.6 %. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable dendrimers for OLED applications.  相似文献   

15.
The photoluminescence (PL) efficiency of emitters is a key parameter to accomplish high electroluminescent performance in phosphorescent organic light‐emitting diodes (PhOLEDs). With the aim of enhancing the PL efficiency, this study designs deep‐blue emitting heteroleptic Ir(III) complexes (tBuCN‐FIrpic, tBuCN‐FIrpic‐OXD, and tBuCN‐FIrpic‐mCP) for solution‐processed PhOLEDs by covalently attaching the light‐harvesting functional moieties (mCP‐Me or OXD‐Me) to the control Ir(III) complex, tBuCN‐FIrpic. These Ir(III) complexes show similar deep‐blue emission peaks around 453, 480 nm (298 K) and 447, 477 nm (77 K) in chloroform. tBuCN‐FIrpic‐mCP demonstrates higher light‐harvesting efficiency (142%) than tBuCN‐FIrpic‐OXD (112%), relative to that of tBuCN‐FIrpic (100%), due to an efficient intramolecular energy transfer from the mCP group to the Ir(III) complex. Accordingly, the monochromatic PhOLEDs of tBuCN‐FIrpic‐mCP show higher external quantum efficiency (EQE) of 18.2% with one of the best blue coordinates (0.14, 0.18) in solution‐processing technology. Additionally, the two‐component (deep‐blue:yellow‐orange), single emitting layer, white PhOLED of tBuCN‐FIrpic‐mCP shows a maximum EQE of 20.6% and superior color quality (color rendering index (CRI) = 78, Commission Internationale de L'Eclairage (CIE) coordinates of (0.353, 0.352)) compared with the control device containing sky‐blue:yellow‐orange emitters (CRI = 60, CIE coordinates of (0.293, 0.395)) due to the good spectral coverage by the deep‐blue emitter.  相似文献   

16.
Electron‐injecting interlayers (ILs) which are stable in air, inject electrons efficiently, block holes, and block quenching of excitons, are very important to realize efficient inverted polymer light‐emitting diodes (IPLEDs). Two air‐stable polymer electron‐injecting interlayers (ILs), branched polyethyleneimine (PEI) and polyethyleneimine ethoxylated (PEIE) for use in IPLEDs are introduced, and the roles of the ILs in IPLEDs comparing these with a conventional Cs2CO3 IL are elucidated. These polymer ILs can reduce the electron injection barrier between ZnO and emitting layer by decreasing the work function (WF) of underlying ZnO, thereby effectively facilitating electron injection into the emitting layer. WF of ZnO covered by PEI is found to be lower than that covered by PEIE due to higher [N+]/[C] ratio of PEI. Furthermore, they can block the quenching of excitons and increase the luminous efficiency of devices. Thus, IPLEDs with PEI IL of optimum thickness (8 nm) show current efficiency (13.5 cd A–1), which is dramatically higher than that of IPLEDs with a Cs2CO3 IL (8 cd A‐1).  相似文献   

17.
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices.  相似文献   

18.
Although significant progress has been made in the development of vacuum‐deposited small‐molecule organic light‐emitting diodes (OLEDs), one of the most desired research goals is still to produce flexible displays by low‐cost solution processing. The development of solution‐processed OLEDs based on small molecules could potentially be a good approach but no intensive studies on this topic have been conducted so far. To fabricate high‐performance devices based on solution‐processed small molecules, the underlying nature of the produced films and devices must be elucidated. Here, the distinctive characteristics of solution‐processed small‐molecule films and devices compared to their vacuum‐deposited counterparts are reported. Solution‐processed blue OLEDs show a very high luminous efficiency (of about 8.9 cd A–1) despite their simplified structure. A better hole‐blocking and electron‐transporting layer is essential for achieving high‐efficiency solution‐processed devices because the solution‐processed emitting layer gives the devices a better hole‐transporting capability and more electron traps than the vacuum‐deposited layer. It is found that the lower density of the solution‐processed films (compared to the vacuum‐deposited films) can be a major cause for the short lifetimes observed for the corresponding devices.  相似文献   

19.
We investigate the light‐emitting performances of blue phosphorescent organic light‐emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) (Bphen), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB), and 2,6‐bis(3‐(carbazol‐9‐yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of 1,000 cd/m2 and 10,000 cd/m2, respectively.  相似文献   

20.
High‐quality violet‐blue emitting ZnxCd1‐xS/ZnS core/shell quantum dots (QDs) are synthesized by a new method, called “nucleation at low temperature/shell growth at high temperature”. The resulting nearly monodisperse ZnxCd1‐xS/ZnS core/shell QDs have high PL quantum yield (near to 100%), high color purity (FWHM) <25 nm), good color tunability in the violet‐blue optical window from 400 to 470 nm, and good chemical/photochemical stability. More importantly, the new well‐established protocols are easy to apply to large‐scale synthesis; around 37 g ZnxCd1‐xS/ZnS core/shell QDs can be easily synthesized in one batch reaction. Highly efficient deep‐blue quantum dot‐based light‐emitting diodes (QD‐LEDs) are demonstrated by employing the ZnxCd1‐xS/ZnS core/shell QDs as emitters. The bright and efficient QD‐LEDs show a maximum luminance up to 4100 cd m?2, and peak external quantum efficiency (EQE) of 3.8%, corresponding to 1.13 cd A?1 in luminous efficiency. Such high value of the peak EQE can be comparable with OLED technology. These results signify a remarkable progress, not only in the synthesis of high‐quality QDs but also in QD‐LEDs that offer a practicle platform for the realization of QD‐based violet‐blue display and lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号