首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene–propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field‐emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, 13C‐NMR, and differential scanning calorimetry measurements. A multilayered core–shell structure of the dispersed phase of hiPP in solution‐cast films and the bulk was observed. The inner core was mainly composed of polyethylene (including its long blocks) together with part of PP, the intermediate layer was ethylene–propylene random copolymer, and the outer shell consisted of ethylene–propylene multiblock copolymers. The formation process and controlling factors of the multilayered core–shell structure are discussed. This kind of multiphase morphology of hiPP caused the material to possess both a high rigidity and high toughness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of polyethylene/polypropylene/poly (ethylene‐co‐propylene) in‐reactor alloys by sequential homopolymerization of ethylene, homopolymerization of propylene, and copolymerization of ethylene and propylene in gas‐phase. Different conditions in the third stage, such as the pressure of ethylene–propylene mixture and the feed ratio of ethylene, were investigated, and their influences on the compositions, structural distribution and properties of the in‐reactor alloys were studied. Increasing the feed ratio of ethylene is favorable for forming random ethylene–propylene copolymer and segmented ethylene–propylene copolymer, however, slightly influences the formation of ethylene‐b‐propylene block copolymer and homopolyethylene. Raising the pressure of ethylene–propylene mixture results in the increment of segmented ethylene–propylene copolymer, ethylene‐b‐propylene block copolymer, and PE fractions, but exerts a slight influence on both the random copolymer and PP fractions. The impact strength of PE/PP/EPR in‐reactor alloys can be markedly improved by increasing the feed ratio of ethylene in the ethylene–propylene mixture or increasing the pressure of ethylene–propylene mixture. However, the flexural modulus decreases as the feed ratio of ethylene in the ethylene–propylene mixture or the pressure of ethylene–propylene mixture increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2481–2487, 2006  相似文献   

3.
A series of ethylene–propylene block copolymer fractions of differing compositions, while still retaining broad molecular weight distributions, were obtained by fractionation of polypropylene (PP) and polyethylene (PE) copolymers prepared by sequential polymerization of ethylene and propylene. The crystallization and melting behavior of the polypropylene‐block‐polyethylene fractions were studied. It was observed that the major component could suppress crystallization of the minor component, leading to a decrease in crystallinity and melting temperature. Non‐isothermal crystallization showed that crystallization of the ethylene block was less influenced by composition and cooling rate than the propylene block. At fast cooling rates, the ethylene block could crystallize prior to the propylene block. Isothermal crystallization kinetics experiments were also conducted. We found that the block copolymers with minor ethylene components had smaller Avrami exponents (n ≈ 1.0), hence indicating a reduced growth dimension of the PE crystals by the pre‐existing PP crystals. On the other hand, the ethylene block exhibited much larger Avrami exponents in those block copolymers with major ethylene contents. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The thermal behavior and the miscibility of an in‐situ polypropylene blend named polypropylene catalloys (PP‐cats) were investigated by using modulated differential scanning calorimeter (MDSC). It is found that all PP‐cats samples present two glass transitions, one of which is ascribed to the ethylene‐propylene random copolymer (EPR), and the other, to isotactic polypropylene (PP). However, no glass transition of ethylene‐propylene block copolymer (E‐b‐P) responsible for a third component in PP‐cats could be found. With the increase of EPR, the glass transition temperatures responding to PP and EPR components, Tg, PP and Tg, EPR, shift to low temperature, because of the enhancement of the interaction between PP and EPR component and the increase of ethylene content in EPR, respectively. Furthermore, the difference between Tg, PP and Tg, EPR remarkably decreases with the increase of the total ethylene content in PP‐cats, which indicates that the miscibility of PP‐cats is strongly dependent on the composition. Comparing the Tg, PP and Tg, EPR with Tg of fractionated PP and EPR, we ascribe the Tg change of PP fraction to the increase of EPR content; while that of EPR, to the increase of ethylene content in EPR. These experimental results suggest that the existence of E‐b‐P plays an important role in improving the miscibility between propylene homopolymer and EPR in PP‐cats. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
A commercial high‐impact polypropylene (hiPP) was fractionated by temperature‐gradient elution fractionation into nine fractions. All fractions were studied using Fourier transform infrared spectroscopy and differential scanning calorimetry. The amount of ethylene in the fractions was also determined. The results demonstrate that the ethylene–propylene statistical copolymer (or ethylene–propylene rubber, EPR) content in this hiPP is rather low and the amounts of ethylene–propylene segmented copolymer and ethylene–propylene block copolymer (that act as adhesive and compatibilizer between elastomeric phase and matrix, respectively) are negligible. Furthermore, the morphology of the resin was studied using scanning electron microscopy observations of microtome‐cut original and etched samples, which reveals that EPR particles are too large and their distribution inside the matrix is not uniform. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
Protein‐resistant polyethylene‐block‐poly(ethylene glycol) (PE‐b‐PEG) copolymers of different molecular weights at various concentrations were compounded by melt blending with polypropylene (PP) polymers in order to enhance their antifouling properties. Phase separation of the PE‐b‐PEG copolymer and its migration to the surface of the PP blend, was confirmed by attenuated total reflectance–Fourier transform infrared, X‐ray photoelectron spectroscopy, and static water contact angle measurements. Enrichment of PEG chains at the surface of the blends increased with increasing PE‐b‐PEG copolymer concentration and molecular weight. The PP blends compounded with PE‐b‐PEG copolymer having the lowest molecular weight (875 g mol?1), at the lowest concentration (1 wt %), gave the lowest bovine serum protein adsorption (30% less) compared to that of neat PP. At higher concentrations (5 and 10 wt %), and higher molecular weights (920, 1400, and 2250 g mol?1), the PE‐b‐PEG copolymers leached‐out resulting in protein adsorption comparable to that of neat PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46122.  相似文献   

7.
A series of spherical polyethylene/polypropylene (PE/PP) in‐reactor alloys were synthesized with spherical high‐yield Ziegler–Natta catalyst by sequential multistage polymerization in slurry. The morphology of PE/PP alloy granule was evaluated by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results show PE/PP in‐reactor alloy with excellent morphology, high porosity, and narrow distribution of the particle size. The PE/PP in‐reactor alloys show excellent mechanical properties with good balance between toughness and rigidity. It was fractionated into five fractions by temperature‐gradient extraction fractionation, and every fractionation was analyzed by FTIR, 13C‐NMR, DSC, and WAXD. The PE/PP in‐reactor alloy was found to contain mainly five portions: PP, PE, segmented copolymer with PP and PE segment of different length, ethylene‐b‐propylene copolymer, and an ethylene–propylene random copolymer. The characteristic chain structure leads to good compatibility between the fractions of the alloy that shows a multiphase structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2075–2085, 2007  相似文献   

8.
Yong Zhou  Hui Niu  Lei Kong  Ying Zhao  Jin-Yong Dong  Dujin Wang   《Polymer》2009,50(19):4690-4695
In this paper, the pristine basic morphology of high impact polypropylene (hiPP) particles prepared with an industrial MgCl2/TiCl4 Ziegler–Natta catalyst undergoing sequentially occurred propylene (P) homopolymerization and ethylene (E)/propylene copolymerization has been probed mainly using transmission electron microscopy (TEM) techniques including plain TEM and the advanced transmission electron microtomography (TEMT). It is revealed that the basic structure units comprising a whole hiPP particle are the submicron PP (polypropylene) globule and nano-sized EP (ethylene-co-propylene) droplet. EP rubber (EPR) domain is formed by the agglomeration of EP droplets. Continually formed EP droplets turn to fill, from inside out, the micro- and macro-pores inside the preformed PP skeleton, affording different-sized EPR domains. Taking the two basic structure units into account, new quaternary structure model describing the manifold structures of hiPP particles has been proposed. From these findings, it is suggested that, to gain hiPP polymers with excellent stiffness/toughness-balanced properties, it is crucial to control the first-staged propylene homopolymerization alongside a rational design of the catalyst architecture to accomplish desired EPR dispersion morphologies that dictate hiPP properties.  相似文献   

9.
Blends of isotactic polypropylene (PP), ethylene‐propylene rubber copolymer (EPR), and ethylene‐propylene crystalline copolymer (EPC) can be produced through in situ polymerization processes directly in the reactor and blends with different structure and composition can be obtained. In this work we studied the structure of five reactor‐made blends of PP, EPR, and EPC produced by a Ziegler‐Natta catalyst system. The composition of EPR was related to the ratio between ethylene and propylene used in the copolymerization step. The ethylene content in the EPR was in the range of 50–70 mol %. The crystallization behavior of PP and EPC in the blends was influenced by the presence of the rubber, and some specific interactions between the components could be established. By preparative temperature rising elution fractionation (P‐TREF) analysis, the isolation and characterization of crystalline EPC fractions were made. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2155–2162, 2004  相似文献   

10.
Two polyethylene/polypropylene (PE/PP) in‐reactor alloy samples were synthesized by multi‐stage gas‐phase polymerization using a spherical Ziegler–Natta catalyst. The alloys show excellent toughness and stiffness. FTIR, 13C‐NMR and thermal analysis proved that the alloys are mainly composed of polyethylene, PE‐block‐PP copolymer and polypropylene. There are also a few percent of ethylene‐propylene segmented copolymer with very low crystallinity. The block copolymer fraction accounts for more than 25 % of the alloy. The role of the block copolymer as compatibilizer between PE and PP is believed to be the key factor that results in the excellent toughness–stiffness balance of the material. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The purpose of the present work is to investigate the compositional difference of polypropylene–polyethylene block copolymers (PP‐b‐PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP‐b‐PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform‐soluble fraction was amorphous ethylene‐propylene rubber, and the content of the rubber in PP‐b‐PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform‐insoluble fraction of the PP‐b‐PE manufactured by hydrogenation is higher than that of by degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3301–3306, 2006  相似文献   

12.
In this work, high melt flow rate (MFR) polypropylene (HF‐PP) and polypropylene/poly(ethylene‐co‐propylene) in‐reactor alloys (HF‐PP/EPR) with MFR ≈ 30 g/10 min were synthesized by spherical MgCl2‐supported Ziegler–Natta catalyst with cyclohexylmethyldimethoxysilane (CHMDMS) or dicyclopentyldimethoxysilane (DCPDMS) as external donor (De). The effects of De on polymerization activity, chain structure, mechanical properties, and phase morphology of HF‐PP and HF‐PP/EPR were studied. Adding CHMDMS caused more sensitive change of the polymers MFR with H2 than DCPDMS, and produced PP/EPR alloys containing more random ethylene‐propylene copolymer (r‐EP) and segmented ethylene‐propylene copolymer (s‐EP). CHMDMS also caused formation of s‐EP with higher level of blockiness than DCPDMS. HF‐PP/EPR alloy prepared in the presence of DCPDMS exhibited higher flexural properties but lower impact strength than that prepared with CHMDMS. Toughening efficiency of the rubber phase was nearly the same in the alloys prepared using CHMDMS or DCPDMS as De, but stiffness of the alloy can be improved by using DCPDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42984.  相似文献   

13.
An impact polypropylene copolymer (IPC) was fractionated into three fractions using n‐octane as solvent by means of temperature‐gradient extraction fractionation. The glass transitions, melting, and crystallization behavior of these three fractions were studied by modulated differential scanning calorimeter (MDSC) and wide‐angle X‐ray diffraction (WAXD). In addition, successive self‐nucleation and annealing (SSA) technique was adopted to further examine the heterogeneity and the structure of its fractions. The results reveal that the 50°C fraction (F50) mainly consists of ethylene‐propylene random copolymer and the molecular chains may contain a few of short but crystallizable propylene and/or ethylene unit sequences; moreover, the lamellae thicknesses of the resulting crystals are extremely low. Furthermore, 100°C fraction (F100) mainly consist of some branched polyethylene and various ethylene‐propylene block copolymers in which some ethylene and propylene units also randomly arrange in certain segments, and some polypropylene segments can form crystals with various lamellae thickness. An obvious thermal fractionation effect for F100 samples after being treated by SSA process is ascribed to the irregular and nonuniform arrangement of ethylene and propylene segments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
This research analyzes the effect of ground tire rubber (GTR) and a novel metallocene‐based ethylene–propylene copolymer (EPR), with high propylene content, on the morphology and mechanical behavior of ternary polymer blends based on a highly flowable polypropylene homopolymer (PP). The PP/EPR blends morphology, with very small domains of EPR dispersed in the PP matrix, indicates a good compatibility among these materials, which leads to a significant improvement on elongation at break and impact strength. The incorporation of EPR on the rubber phase of thermoplastic elastomeric blends (TPE) based on GTR and PP (TPEGTR) has a positive effect on their mechanical performance, attributed to the toughness enhancement of the PP matrix and to the establishment of shell‐core morphology between the rubber phases. The mechanical properties of the ternary blends reveal that TPEGTR blends allow the upcycling of this GTR material by injection molding technologies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42011.  相似文献   

15.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of in‐reactor polyethylene/polypropylene alloys by polyethylene homopolymerization and subsequent homopolymerization of propylene in the gas phase. Different conditions in the ethylene homopolymerization stage, such as monomer pressure and polymerization temperature, were investigated, and their influences on the structure and properties of in‐reactor alloys were studied. Raising the polymerization temperature is the most effective way of speeding up polymerization and regulating the ethylene content of polyethylene (PE)/polypropylene (PP) alloys, but it will cause a greater increase in the PE‐b‐PP block copolymer fraction (named fraction D) than in the fraction of PP‐block‐PE in which the PP segments have low or medium isotacticity (named fraction A). Although changing ethylene monomer pressure could influence the ethylene content of PE/PP alloys slightly, it is an effective way of regulating the structural distribution. Reducing the monomer pressure will evidently increase fractions A and D. The mechanical properties of the alloys, including impact strength and flexural modulus, can be regulated in a broad range with changes in polymerization conditions. These properties are highly dependent on the amount, distribution, and chain structure of fractions A and D. The impact strength is affected by both fraction A and fraction D in a complicated way, whereas the flexural modulus is mainly determined by the amount of fraction A. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2136–2143, 2006  相似文献   

16.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

17.
In this research, the reinforcement of polypropylene (PP) was studied using a new method that is more practical for synthesizing polypropylene‐block‐poly(ethylene‐propylene) copolymer (PP‐co‐EP), which can be used as a rubber toughening agent. This copolymer (PP‐co‐EP) could be synthesized by varying the feed condition and changing the feed gas in the batch reactor system using Ziegler–Natta catalysts system at a copolymerization temperature of 10°C. The 13C‐NMR tested by a 21.61‐ppm resonance peak indicated the incorporation of ethylene to propylene chains that could build up the microstructure of the block copolymer chain. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA) results also confirmed these conclusions. Under these conditions, the morphology of copolymer trapped in PP matrix could be observed and the copolymer Tg would decrease when the amount of PP‐co‐EP was increased. DMA study also showed that PP‐co‐EP is good for the polypropylene reinforcement at low temperature. Moreover, the PP‐co‐EP content has an effect on the crystallinity and morphology of polymer blend, i.e., the crystallinity of polymer decreased when the PP‐co‐EP content increased, but tougher mechanical properties at low temperature were observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3609–3616, 2007  相似文献   

18.
The effect of tale on the b‐axis orientation of the polypropylene crystals in polypropylene (PP)/ethylene‐propylene rubber (EPR)/talc blends of injection moulding was examined using the X‐ray diffraction method. The b‐axes of the PP crystals were most strongly oriented in the thickness direction for the injection molded PP/EPR/talc blends. The b‐axis orientation in the thickness direction of injection moldings was promoted by increasing the concentration of talc, by reducing the particle size, or by purifying the tale. The dependence of the specimens' rigidity on talc content, particle size, and purity was also investigated. The rigidity depended on the degree of b‐axis orientation. The result of our investigated suggest that increasing the orientation of the PP crystals that are near talc particles may improve the rigidity.  相似文献   

19.
The morphology and mechanical properties of novel block copolymers consisting of isotactic polypropylene (PP) and ethylene–propylene rubber (EPR) synthesized by a short‐period polymerization method were examined using differential scanning calorimetry, atomic force microscopy, dynamic mechanical analysis, and a rheooptical technique. It was found that the novel block copolymers show a single glass transition and EPR segments are trapped into the amorphous region of PP. Furthermore, the rheooptical analysis demonstrates that a drawing process of the EPR‐rich block copolymer induces orientation of the PP lamellae in the EPR matrix. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 958–964, 1999  相似文献   

20.
In this work, a series of polypropylene/poly(ethylene‐co‐propylene) (iPP/EPR) in‐reactor alloys were prepared by MgCl2/TiCl4/diester type Ziegler‐Natta catalyst with triethylaluminium/triisobutylaluminium (TEA/TIBA) mixture as cocatalyst. The influence of cocatalyst and external electron donor, e.g., diphenyldimethoxysilane (DDS) or dicyclopentyldimethoxysilane (D ‐donor), on the structure and mechanical properties of iPP/EPR in‐reactor alloys were studied and discussed. According to the characterization results, PP/EPR was mainly composed of random poly(ethylene‐co‐propylene), segmented poly(ethylene‐co‐propylene), and high isotactic PP. Using TEA/TIBA mixture as cocatalyst and DDS as external electron donor, as TEA/TIBA ratio increased, the impact strength of iPP/EPR in‐reactor alloys had an increasing trend. Using TEA/TIBA mixture as cocatalyst and D ‐donor as external electron donor, the impact strength of iPP/EPR in‐reactor alloy were dramatically improved. In this case, the iPP/EPR in‐reactor alloy prepared at TEA: TIBA = 4 : 1 was the toughest. The influence of cocatalyst and external electron donor on the flexural modulus and flexural strength could be ignored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号