首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crosslinked polystyrene‐multiwalled carbon nanotube (PS‐MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS‐MWCNT balls ranged from 10 to 100 μm and their electrical conductivity was about 7.7 × 10?3 S/cm. The morphology of the crosslinked PS‐MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS‐MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS‐MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS‐MWCNT ball composites were better than those of the PS/pristine MWCNT composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The main objective of this research was to investigate the effect of chitosan content and chemical modification with acetic acid on mechanical and thermal properties of PP/Chitosan. It was found that the tensile strength, elongation at break and crystallinity of untreated PP/Chitosan composites decreased with increasing filler content; however, Young's modulus and thermal stability increased. The treated chitosan with acetic acid have improved the tensile strength and Young's modulus of PP/Chitosan composites. The thermal analysis results show that chemical modified chitosan had increase thermal stability and crystallinity of treated PP/Chitosan composites. The scanning electron microscopy (SEM) study of the tensile fracture surface of treated PP/Chitosan composites indicated that the presence of acetic acid increased the interfacial interaction between chitosan and polypropylene matrix.  相似文献   

3.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

4.
In the present work, chitosan (CS)‐grafted multiwalled carbon nanotube (MWCNT) nanocomposites were prepared via covalently bonded CS onto MWCNTs that had weight fractions of MWCNTs ranging from 0.1 to 3.0 wt % by a simple method of solution casting. The structure, morphology, and mechanical properties of the films were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, optical microscopy, wide‐angle X‐ray diffraction, contact angle, and tensile testing. The results indicated that the CS chains were attached onto the MWCNTs successfully via covalent linkages. More interestingly, the MWCNTs provided a matrix that facilitated the crystallization of CS. Compared with the pure CS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 39.6 to 105.6 MPa and from 2.01 to 4.22 GPa with an increase in the MWCNT loading level from 0 to 3.0 wt %, respectively. The improvement in the tensile strength and modulus were ascribed to the uniform dispersion of MWCNTs covalently linked to the CS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Both epoxy resin and acid‐modified multiwall carbon nanotube (MWCNT) were treated with 3‐isocyanatopropyltriethoxysilane (IPTES). Scanning electron microscopy (SEM) and transmission electronic microscope (TEM) images of the MWCNT/epoxy composites have been investigated. Tensile strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 41% comparing to the neat epoxy. Young's modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 52%. Flexural strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 145% comparing to neat epoxy. Flexural modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 31%. Surface and volume electrical resistance of MWCNT/epoxy composites were decreased with IPTES‐MWCNT content by 2 orders and 6 orders of magnitude, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Polypropylene (PP)/multiwalled carbon nanotube (MWCNT) composites are prepared by implementing noncovalent compatibilization. The compatibilization method involves PP matrix functionalization with pyridine (Py) aromatic moieties, which are capable of π–π interaction with MWCNT sidewalls. Imaging revealed that the addition of 25 wt% of PP‐g‐Py to neat PP is capable of drastically reducing nanotube aggregate size and amount, compared to a matrix containing the equivalent amount of a maleated PP (PP‐g‐MA). Raman spectroscopy confirms improved polymer/nanotube interaction with the PP‐g‐Py matrix. The electrical percolation threshold appears at a MWCNT loading of approximately 1.2 wt%, and the maximum value of the electrical conductivity achieved is 10−2 S/m, irrespective of the functionalization procedure. The modulus of the composites is improved with the addition of MWCNTs. Furthermore, composites functionalized with Py display significant improvements in composite ductility compared with their maleated counterparts because of the improved filler dispersion. POLYM. COMPOS., 37:2794–2802, 2016. © 2015 Society of Plastics Engineers  相似文献   

9.
In this study, multi‐walled carbon nanotubes (MWCNTs) and boron nitride (BN) were functionalized with cetyltrimethylammonium bromide (CTAB) at both pH 5.5 and pH 11. These MWCNT‐CTAB and BN‐CTAB particles used to prepare the composites were dispersed in a bisphenol A (DGEBA)‐type epoxy resin (ER) system at room temperature. The TGA analysis showed that the BN composite can significantly improve the thermal stability of neat ER at temperatures above 400 °C. The curing degrees of the nanocomposites were calculated to be approximately the same values as neat ER using the Beer–Lambert law from FTIR spectra. The best electrical conductivity of the composites obtained was 3.10 × 10−3 S/cm for ER/MWCNT‐CTAB (pH 5.5). The surface hardness, Young's modulus, and tensile strength of the composites were examined. The surface hardness values of the ER/MWCNT‐CTAB composites were higher than those of the other composites. The composite morphology was characterized using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). POLYM. COMPOS., 37:3423–3432, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
The mechanical properties, morphology, and thermal properties of chitosan‐filled polypropylene (PP) composites have been studied. The effect of the chemical modification of chitosan by acrylic acid treatment was also investigated. Results showed that the tensile strength and elongation at break decreased but that the Young's modulus of the composites increased with increasing filler loading. Chemical modification of chitosan with acrylic acid improved the tensile strength and Young's modulus of the composites but reduced the elongation at break. Thermogravimetric analysis showed that the addition of chitosan improved the thermal stability of the PP/chitosan composites as compared to that of neat PP. Chemical modification of chitosan had a positive effect on the thermal stability of the composites. This change was attributed to improvement of the interfacial adhesion between the chitosan and PP matrix due to formation of a covalent bond between chitosan and acrylic acid. Meanwhile, differential scanning calorimetric analysis showed that the addition of filler did not significantly change the melting temperature (Tm) of the PP/chitosan composites. The degree of crystallinity of the composites decreased with the addition of chitosan. At a similar chitosan loading, the chemically treated PP/chitosan composites exhibited higher crystallinity than the untreated composites and exhibited slightly increased Tm. A scanning electron microscopy study of the tensile fracture surface of chemically treated PP/chitosan composites indicated that the presence of acrylic acid increased the interfacial interaction between chitosan and the polypropylene matrix. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
The effect of various fillers on the mechanical, barrier, and flammability properties of polypropylene (PP) was studied. PP was filled with 4 wt% of nano‐sized calcium carbonate, titanium dioxide, organoclay, and multiwalled carbon nanotube (MWCNT). For comparison, micron‐sized calcium carbonate was also studied. Two‐step masterbatch dilution approach of the composites suggested no or only minor improvements in Young's modulus and tensile yield strength, whereas their ductility decreased compared to coupling agent‐modified PP matrix. The water vapor transmission results of filled films showed increased permeability compared to their coupling agent‐modified counterpart. Oxygen permeability, however, decreased for the composites. The MWCNT‐filled matrix showed the highest barrier and fire performance, attributed mainly to its higher filler volume content, but also other reasons such as the effect of filler dispersion, composite's thermal stability, and polymer crystallinity were discussed.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Chitosan was used as filler in polypropylene (PP) polymer. In order to improve compatibility between chitosan and PP, chitosan was chemically modified with 3-aminopropyltriethoxysilane (3-APE). The results show that the increasing of filler content decreased tensile strength and elongation at break, but increased Young's modulus of composites. The treated composites exhibit higher tensile strength and Young's modulus, but lower elongation at break compared untreated composites. The addition of 3-APE has improved thermal properties such as thermal stability and crystallinity of treated composites. SEM study of the tensile fracture surface of treated composites shows better interfacial interaction and adhesion between the chitosan-PP matrix.  相似文献   

13.
Microstructural characterization of corn starch‐based porous thermoplastic (TPS) composites containing various contents (0.1, 0.5, and 1 wt %) of multiwalled carbon nanotubes (MWCNTs) was performed. Corn starch was plasticized with a proper combination of glycerol and stearic acid. TPS composites with MWCNT were prepared conducting melt extrusion followed by injection molding. TPS containing 1 wt % of MWCNTs exhibited higher tensile strength and elastic modulus values than neat TPS. Moreover, TPS electrical conductivity was determined to increase with increasing content of MWCNTs. X‐ray diffraction measurements revealed that incorporation of MWCNTs increased the degree of TPS crsystallinity to some extent. Scanning electron microscopy examination revealed that MWCNT altered TPS surface morphology and tensile failure modes, significantly. Transmission electron microscopy investigation showed that dispersion characteristics of MWCNTs within TPS were in the form of tiny clusters around micro pores of TPS, which is considered influential on electrical conductivity of the resulting composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

15.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
Three types of surfactants were used to enhance the dispersion of multi-wall carbon nanotubes (MWCNTs) in the epoxy matrix. MWCNTs were separately treated with non-ionic (polyoxyethylene octyl phenyl ether, Triton X-100), cationic (hexadecyl-trimethyl-ammonium bromide, CTAB) and anionic (sodium dodecyl sulfate, SDS) surfactants and their effects were evaluated on the dispersion state and surface chemistry, as well as on the tensile properties and tensile fracture surface morphology of MWCNTs/epoxy nanocomposites. The active surfaces of the carbon nanotubes were characterized by FTIR. The non-ionic surfactant, Triton X-100, had the best effect on dispersion of the MWCNT in the epoxy matrix, thus, positively affecting the tensile parameters of the corresponding nanocomposites which were attributed to the ??bridging?? effects between the MWCNT and epoxy, introduced by the hydrophobic and hydrophilic heads of the corresponding surfactant. Presence of MWCNTs as reinforcing agent increased the elastic modulus of nanocomposites, indicating the improved interfacial adhesion between CNTs and polymer matrix. The regions of nucleation and propagation of cracks were clearly seen in the SEM micrographs of the tensile fracture surface of the nanocomposites. The cracks deviated on reaching the carbon nanotubes. The dispersing aiding capabilities of the three surfactants used in the present study were as follows: cationic?<?anionic?<?non-ionic.  相似文献   

17.
Electrical, mechanical, and thermal properties of the poly(methyl methacrylate) (PMMA) composites containing functionalized multiwalled carbon nanotubes (f‐MWCNTs) and reduced graphene oxide (rGO) hybrid nanofillers have been investigated. The observed electrical percolation threshold of FHC is 0.8 wt% with maximum conductivity of 1.21 × 10?3 S/cm at 4 wt% of f‐MWCNTs. The electrical transport mechanism and magneto resistance studied of hybrid composites have also been investigated. Progressive addition of f‐MWCNTs in rGO/PMMA composite results increase in mechanical (tensile strength and Young's modulus) and thermal (thermal stability) properties of f‐MWCNTs‐rGO/PMMA hybrid nanocomposites (FHC). The increased mechanical properties are due to the efficient load transfer from PMMA matrix to f‐MWCNTs and rGO through better chemical interaction. The strong interaction between PMMA and f‐MWCNTs‐rGO in FHC is the main cause for improved thermal stability. POLYM. ENG. SCI., 59:1075–1083, 2019. © 2019 Society of Plastics Engineers  相似文献   

18.
Biopolyurethane nanocomposites reinforced with silane‐modified multiwalled carbon nanotubes (s‐MWCNT) were successfully prepared. The carbon nanotube surfaces were modified by means of functional amine groups via ozone oxidation followed by silanization. The surface structure of the s‐MWCNTs was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. The s‐MWCNTs were incorporated into a vegetable oil‐based polyurethane (PU) network via covalent bonding to prepare PU nanocomposites. The effect of s‐MWCNT loading on the morphology, thermomechanical, and tensile properties of the PU nanocomposites was studied. It was determined that the s‐MWCNTs were dispersed effectively in the polymer matrix and that they improved the interfacial strength between the reinforcing nanotubes and the polymer matrix. Storage modulus, glass transition temperature, Young's modulus, and tensile strength of the nanocomposites increased with increasing s‐MWCNT loading up to 0.8%. However, increasing the s‐MWCNT content to 1.2 wt % resulted in a decrease in thermomechanical properties of the PU nanocomposites. This effect was attributed to the fact that at high s‐MWCNT contents, the increased number of amine groups competed with the polyol's hydroxyl groups for isocyanate groups, causing a decrease in the integrity of the PU matrix. High s‐MWCNT contents also facilitated aggregation of the nanotubes, causing a decrease in thermomechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42515.  相似文献   

19.
In this work, multiwalled carbon nanotubes (MWCNTs), as reinforcing agent, were blended with linear low‐density polyethylene (LLDPE), then molded by hot compression molding to prepare LLDPE/MWCNTs composites. Tensile tests indicate that the strength, Young's modulus, and toughness are all improved for LLDPE/MWCNTs composites containing 1 and 3 wt % MWCNTs. Compared with LLDPE, the Young's modulus of LLDPE/MWCNTs composites rises from 144.8 to 270.8 MPa at 1 wt % MWCNTs content. At the same time, increases of 18.5% in tensile strength and 16.6% in yield strength are achieved. Additionally, its toughness is enhanced by 26.7% than that of LLDPE. Microstructure characterizations, including differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy were performed to investigate the variations of microstructure and further to establish the relationship between microstructure and mechanical properties. Homogeneous dispersion of MWCNTs, network formation, and development of an oriented nanohybrid shish‐kebab structure contribute to the enhanced strength and toughness. The increased crystallinity is beneficial to the reinforcement and increased modulus. Additionally, the thermal stability of the LLDPE/MWCNTs composites is enhanced as well. This work suggests a promising routine to optimize polymer/MWCNTs composites by tailoring the structural development. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45525.  相似文献   

20.
Poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) composites were prepared by in situ polymerization. To improve the dispersion of MWCNTs in the PET matrix, functionalized MWCNTs having acid groups (acid‐MWCNTs) and acetic groups (acetic‐MWCNTs) on their surfaces were used. The functional groups were confirmed by infrared spectrometry. Scanning electron microscopy showed that acetic‐MWCNTs had a better dispersion in the PET matrix than pristine MWCNTs and acid‐MWCNTs. A reaction between PET and acetic‐MWCNTs was confirmed by a shift of the Raman G band to a higher frequency and an increase of the complex viscosity in the rheological properties. The composites containing functionalized MWCNTs showed a large increase in their tensile strengths and moduli. The values of the strengths and moduli of the PET/acetic‐MWCNT composites were higher than those of the PET/acid‐MWCNT composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号