首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This study describes the influence of triethylenetetramine (TETA) grafting of multi‐walled carbon nanotubes (MWCNTs) on the dispersion state, interfacial interaction, and thermal properties of epoxy nanocomposites. MWCNTs were first treated by a 3:1 (v/v) mixture of concentrated H2SO4/HNO3, and then TETA grafting was performed. Chemically grafted MWCNT/bisphenol‐A glycidol ether epoxy resin/2‐ethyl‐4‐methylimidazole nanocomposites were prepared. TETA grafting could establish the connection of MWCNTs to the epoxy matrix and transform the smooth and nonreactive MWCNT surface into a hybrid material that possesses the characteristics of both MWCNTs and TETA, which facilitates homogeneous dispersion of MWCNTs and improves nanotube‐epoxy interfacial interaction. Therefore, the impact property, glass transition temperature, thermal stability, and thermal conductivity of epoxy nanocomposites are enhanced. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

2.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) were covalently functionalized with polyhedral oligomeric silsequioxane (POSS). The results of Fourier Transform Infrared Spectroscopy, Raman spectroscopy and Transmission Electron Microscopy indicated that POSS particles were grafted onto MWCNTs. The POSS content determined by thermo‐gravimetric analysis (TGA) was estimated to be ~25 wt%. A stable and superhydrophobic surface characteristic was observed for the film made of MWCNTs grafted with POSS (MWCNT‐g‐POSS) even after an exposure to a high‐humidity environment for three weeks. The water contact angle of the sample was measured to be 160.5 ± 1.1°. Buckypapers were made from both pristine MWCNTs and chemically converted to MWCNT‐g‐POSS. The pore structures of the buckypapers were characterized by mercury intrusion porosimetry and scanning electron microscopy. The flame‐retardant performance of the buckypaper‐based composites was evaluated by TGA and microscale combustion calorimetry (MCC) test. The TGA test results indicated that the MWCNT‐g‐POSS dramatically increased the char residues of the composite. Approximately 72% reduction in peak heat release rate was achieved for the MWCNT‐g‐POSS /resin composite from the MCC testing. The fire‐retardant mechanism was discussed. POLYM. ENG. SCI., 2013. © Society of Plastics Engineers  相似文献   

4.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate‐co‐octadecyl methacrylate) (M/O) matrices and four different types of multiwall carbon nanotubes: pristine, oxidized (MWCNT–COOH), methyl ester (MWCNT–COOCH3), and dodecyl ester (MWCNT–COOC12H25) functionalized, were prepared in situ by radical (co)polymerization. The effectiveness of preparation of nanocomposites regarding dispersion and distribution of various MWCNT in polymer matrices was sized by Scanning electron microscopy. In case of PMMA matrix, the best dispersion and distribution were accomplished for MWCNT–COOCH3 due to their chemical resemblance with polymer matrix. After the introduction of 10 mol % of octadecyl methacrylate in polymer matrix a fairly good dispersion and distribution of MWCNT–COOCH3 were retained. The addition of 1 wt % of MWCNTs caused a significant reduction in the degree of polymerization of the PMMA matrix. But at the same time, the present MWCNTs increased storage modulus of PMMA nanocomposites except for dodecyl ester functionalized MWCNT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46113.  相似文献   

5.
Poly(p‐phenylene benzobisoxazole)/multiwalled carbon nanotubes (PBO‐MWCNT) composites with different MWCNT compositions were prepared through in situ polymerization of PBO in the presence of carboxylated MWCNTs. The nanocomposite's structure, thermal and photophysical properties were investigated and compared with their blend counterparts (PBO/MWCNT) using Fourier transform infrared spectra, Raman spectra, Wide‐angle X‐ray diffraction, thermogravimetric analysis, UV‐vis absorption, and photoluminescence. The results showed that MWCNTs had a strong interaction with PBO through covalent bonding. The incorporation of MWCNTs increased the distance between two neighboring PBO chains and also improved the thermal resistance of PBO. The investigation of UV‐vis absorption and fluorescence emission spectra exhibited that in situ PBO‐MWCNT composites had a stronger absorbance and obvious trend of red‐shift compared with blend PBO/MWCNT composites for all compositions. This behavior can be attributed to the efficient energy transfer through forming conjugated bonding interactions in the PBO‐MWCNT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this paper, γ‐ray radiation technique was utilized to simply functionalize multi‐walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs (MWCNTs‐Am) was proven and the physicochemical properties of MWCNTs before and after radiation grafting modifications were characterized using FT‐IR, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated that the γ‐ray radiation had the visible effects on the surface properties of MWCNTs. The effects of various functionalized MWCNTs on morphological, thermal, and mechanical properties of an epoxy‐based nanocomposite system were investigated. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy‐based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT‐Am showed 13.0% increase in tensile strength, 20.0% increase in tensile modulus, and 24.1% increase in thermal decomposition temperature. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
The aim of this article is improved the surface properties of Poly[p‐phenylenebenzobisoxazole] (PBO) fiber with epichlorohydrin hybridized carboxylic multi walled carbon nanotubes (MWCNTs‐Ecp) grafting by using γ‐ray irradiation technology. The surface chemical properties, the surface morphology, the amount of the grafted MWCNTs on PBO fiber and the surface free energy of PBO fibers have been analyzed. The results show that MWCNTs‐Ecp have been grafted on the surface of PBO fiber by γ‐ray irradiation treatment. The surface chemical inertness and the surface smoothness of PBO fiber are significantly improved by grafting MWCNTs‐Ecp chains, the amount of the grafted MWCNTs on PBO fiber is about 11.9%, and the surface free energy of PBO fiber has an increase of 42.6% by generating some active groups such as ? COOH, ? OH, and ? C? Cl on the surface of PBO fiber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
This study compares the properties of a highly conductive polymer based on polypyrrole and multiwall carbon nanotubes (MWCNTs) grafted with poly (styrenesulfonic acid) (PPy/MWCNT‐gr‐PSSA) prepared for flexible indium tin oxide‐free organic solar cell (OSC) anode with those of PH500 poly(3,4‐ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) in various solvents. Hydrophilic poly(styrenesulfonic acid) (PSSA) was grafted on the MWCNT surfaces to improve dispersion of the MWCNT in an aqueous solution. MWCNT‐gr‐PSSA was added because MWCNT acts as a conductive additive and a template for the polymerization of PPy. Polymerization yields increased as the amount of MWCNT‐gr‐PSSA increased and reached a maximum when 50% of MWCNT‐gr‐PSSA was added. The conductivity of PPy/MWCNT‐gr‐PSSA composite was further improved and the value reached ~ 152 S/cm with the addition of a toluenesulfonic acid (TSA)/HCl dopant mixture. To prepare a flexible OSC anode, PPy/MWCNT‐gr‐PSSA dissolved in solvent mixture, was coated onto a polyethylene terephthalate (PET) substrate. PPy/MWCNT‐gr‐PSSA was dissolved in a mixture of solvents including DMSO, NMP, EG, DEG, and glycerol of a high boiling point that was spin coated onto the PET, then annealed for 30 min at various temperatures. The conductivity of PPy/MWCNT‐gr‐PSSA was further enhanced with solvent treatment and annealing at temperature ranges of 100–175°C. Under optimum conditions, the conductivity and transmittance of PPy/MWCNT‐gr‐PSSA on PET reached 602 S/cm and 84% at 550 nm, respectively. In addition, it was confirmed that the energy level and mechanical strength of the film were suitable for OSC electrode use. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Poly(butylene succinate) (PBS)/pristine raw multiwalled carbon nanotube (MWCNT) composites were prepared in this work via simple melt compounding. Morphological observations indicated that the MWCNTs were well dispersed in the PBS matrix. Moreover, the incorporation of MWCNTs did not affect the crystal form of PBS as measured by wide‐angle X‐ray diffraction. The rheology, crystallization behaviors, and thermal stabilities of PBS/MWCNT composites were studied in detail. Compared with neat PBS, the incorporation of MWCNTs into the matrix led to higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), shear thinning behaviors, and lower damping factor (tan δ) at low frequency range, and shifted the PBS/MWCNT composites from liquid‐like to solid‐like, which affected the crystallization behaviors and thermal stabilities of PBS. The presence of a very small quantity of MWCNTs had a significant heterogeneous‐nucleation effect on the crystallization of PBS, resulting in the enhancement of crystallization temperature, i.e., with the addition of 0.5 wt % MWCNTs, the values of Tc of PBS/MWCNT composites could attain to 90°C, about 6°C higher than that of neat PBS, whereas the values of Tc increased slightly with further increasing the MWCNTs content. The thermogravimetric analysis illustrated that the thermal stability of PBS was improved with the addition of MWCNTs compared with that of neat PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
In this study, copper chloride (CuCl2)‐doped polyaniline (PANI)/multiwalled carbon nanotubes (MWCNTs) nanocomposite (PANI C2 CNT), CuCl2‐doped PANI (PANI C2) and pure PANI was synthesized by in situ oxidative polymerization method, using ammonium peroxodisulfate as oxidant in HCl medium. These composites were investigated as electrode materials for supercapacitors. The interaction of metal cation (Cu2+) with PANI was confirmed by Fourier transform infrared spectroscopy. The morphology of the composites was characterized by field‐emission scanning electron microscopy and high‐resolution transmission electron microscopy analysis. Electrochemical characterizations of the materials were carried out by three electrode probe method, where platinum and saturated standard calomel electrode were used as counter and reference electrode, respectively. 1 M KCl solution was used as electrolyte for all the electrochemical characterizations. The transition metal ion doping enhanced the electrochemical properties of the conducting polymer. Among all the composites, CuCl2‐doped PANI/MWCNT showed highest specific capacitance value of 724 F/g at 10 mV s−1 scan rate. The Nyquist plot of the polymeric materials showed low equivalent series resistance of the electrode materials. Thermal stability of the composites was examined by thermogravimetric analysis.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
In this study, 2‐hydroxyethyl methacrylate and N‐isopropyl acrylamide was block grafted onto the polypropylene macroporous membrane surface by photo‐induced reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with benzyl dithiobenzoate as the RAFT agent. The degree of grafting of poly(2‐hydroxyethyl methacrylate) on the membrane surface increased with UV irradiation time and decreased with the chain transfer agent concentration increasing. The poly(2‐hydroxyethyl methacrylate)‐ grafted membranes were used as macro chain transfer agent for the further block graft copolymerization of N‐isopropyl acrylamide in the presence of free radical initiator. The degree of grafting of poly(N‐isopropyl acrylamide) increased with reaction time. Furthermore, the poly(2‐hydroxyethyl methacrylate)‐ grafted membrane with a degree of grafting of 0.48% (wt) showed the highest relative pure water flux and the best antifouling characteristics of protein dispersion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Multi‐walled carbon nanotubes (MWCNTs) filled polypropylene (PP) composites were prepared by a corotating intermeshing twin screw extruder. To improve the dispersion of MWCNTs, the surface of MWCNT was modified with 1,10‐diaminodecane, and maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizer. Micrographs of well dispersed functionalized MWCNTs (diamine‐MWCNT) were observed due to the reaction between MA‐g‐PP and diamine‐MWCNT in PP/MA‐g‐PP/diamine‐MWCNTs composites. The different behaviors in crystallization and melting temperatures of PP/MA‐g‐PP/diamine‐MWCNTs composite were observed compared to PP and PP/neat‐MWCNT. Especially, the decomposition temperature of the composite was increased by 50°C compared to PP. PP/MA‐g‐PP/diamine‐MWCNTs composite showed the highest complex viscosity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Controlled thermoresponsive PET track‐etched membranes were synthesized by grafting N‐isopropylacrylamide (NIPAAm) onto the membrane surface via atom transfer radical polymerization (ATRP). The initial measurements were made to determine the anchoring of ATRP initiator on PET membrane surface. Thereafter, polymerization was carried out to control the mass of polymer by controlling reaction time grafted from the membrane surface and, ATR‐FTIR, grafting degree measurements, water contact angle measurements, TGA, and SEM were used to characterize changes in the chemical functionality, surface and pore morphology of membranes as a result of modification. Water flux measurements were used to evaluate the thermoresponsive capacity of grafted membranes. The results show the grafted PET track‐etched membranes exhibit rapid and reversible response of permeability to environmental temperature, and its permeability could be controlled by controlling polymerization time using ATRP method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

14.
Polyaniline (PANI) N‐grafted with poly(ethyl acrylate) (PEA) was synthesized by the grafting of bromo‐terminated poly (ethyl acrylate) (PEA‐Br) onto the leucoemeraldine form of PANI. PEA‐Br was synthesized by the atom transfer radical polymerization of ethyl acrylate in the presence of methyl‐2‐bromopropionate and copper(I) chloride/bipyridine as the initiator and catalyst systems, respectively. The leucoemeraldine form of PANI was deprotonated by butyl lithium and then reacted with PEA‐Br to prepare PEA‐g‐PANI graft copolymers containing different amounts of PEA via an N‐grafting reaction. The graft copolymers were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. Solubility testing showed that the solubility of PANI in chloroform was increased by the grafting of PEA onto PANI. The morphology of the PEA‐g‐PANI graft copolymer films was observed by scanning electron microscopy to be homogeneous. The electrical conductivity of the graft copolymers was measured by the four‐probe method. The results show that the conductivity of the PANI decreased significantly with increasing grafting density of PEA onto the PANI backbone up to 7 wt % and then remained almost constant with further increases in the grafting percentage of PEA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Phase change materials (PCMs) function based on latent heat stored on or released from a substance over a slim temperature range. Multiwalled carbon nanotubes (MWCNTs) and polyaniline are important elements in sensor devices. In this work, pristine and polyaniline‐grafted MWCNTs (PANI‐g‐MWCNTs) were applied as conductive carbon‐based fillers to make PCMs based on paraffin. The attachment of PANI to the surface of MWCNTs was proved by Fourier transform Infrared analysis. Dispersion of MWCNTs in paraffin was studied by wide‐angle X‐ray scattering. Heating and solidification of PCM nanocomposites were investigated by differential scanning calorimetry, while variation in nanostructure of PCMs during heating/solidification process was evaluated by rheological measurements. It was found that after 30 min of sonication, the samples filled with 1 wt % MWCNTs have melting and solidification temperatures of 29 and 42 °C, respectively. It was also found that PANI attachment to MWCNTs significantly changes thermal conductivity behavior of PCM nanocomposites. The developed MWCNTs‐based sensor elements responded sharply at low MWCNTs content, and experienced an almost steady trend in conductivity at higher contents, while PANI‐g‐MWCNTs sensor followed an inverse trend. This contradictory behavior brought insight for understanding the response of PCMs against thermal fluctuations. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45389.  相似文献   

16.
Free radical miniemulsion polymerization of styrene (St), St/acrylonitrile 3 : 1 mixture or methylmethacrylate in the presence of multiwalled carbon nanotubes (MWCNT) was proven as a convenient way to obtain homogenous hybrids with perspectives in associated applications like foams specialties materials. Miniemulsion polymerization was viable up to 2% wt. MWCNT to monomer, without agglomerations. The grafting on MWCNT during the polymerization occurs without the need for supplementary functionalization and the polymer grafted nanotubes showed stable dispersions in the polymer solvent. Monomer polarity affected the grafting ability during the polymerization process. The nanocomposites obtained after purification and drying were used in foaming process. MWCNT presence in the related nanocomposites decreased the pore sizes in foam‐like materials (for all three different matrices). At 1 wt % MWCNT content, low density (< 0.3 g/cm3), low pore size (< 10 μm) and high cell density (>109 cell/cm3) were achieved. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41148.  相似文献   

17.
To design the interface between carbon nanotubes and natural rubber (NR), a silane coupling agent, bis(3‐triethoxysilylpropyl) tetrasulfide (TESPT), was used to modify the surface of multiwalled carbon nanotubes (MWCNTs) in a two‐step method, and the silane‐modified multiwalled carbon nanotubes (s‐MWCNTs) were combined with NR by solvent casting. The s‐MWCNTs with an amorphous layer were visualized by transmission electron microscopy, the functional groups of which were confirmed by Raman and Fourier transform infrared analyses, and the functionalization degree was characterized by thermogravimetric analysis. The interface between s‐MWCNTs and NR was investigated by Raman analysis and field emission scanning electron microscopy (FESEM). Raman analysis showed a shift from 1,340 to 1,353 cm−1 of D band of s‐MWCNTs in the NR/s‐MWCNT composite, and FESEM observation indicated that s‐MWCNTs were embedded deeply in NR. All of these results proved that s‐MWCNTs were grafted with TESPT and they reacted with the active double bonds of NR to form a strong interface. The improved interface resulted in an extreme nonlinear viscoelastic behavior and enhanced dynamic mechanical property of NR/s‐MWCNT composite as compared to NR/MWCNT composite. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
Poly(butylene terephthalate) (PBT) composites containing multiwalled carbon nanotubes (MWCNTs) were prepared using a melt‐blending process and used to examine the effects on the composite structure and properties of replacing PBT with acrylic acid‐grafted PBT (PBT‐g‐AA). PBT‐g‐AA and multihydroxyl‐functionalized MWCNTs (MWCNTs‐OH) were used to improve the compatibility and dispersibility of the MWCNTs within the PBT matrix. The composites were characterized morphologically using transmission electron microscopy, and chemically using Fourier transform infrared, solid‐state 13C NMR and UV‐visible absorption spectroscopy. The antibacterial and electrical conductivity properties of the composites were also evaluated. MWCNTs or MWCNTs‐OH enhanced the antibacterial activity and electrical conductivity of the PBT/MWCNT or PBT‐g‐AA/MWCNTs‐OH composites. The functionalized PBT‐g‐AA/MWCNTs‐OH composites showed markedly enhanced antibacterial properties and electrical conductivity due to the formation of ester bonds from the condensation of the carboxylic acid groups of PBT‐g‐AA with the hydroxyl groups of MWCNTs‐OH. The optimal proportion of MWCNTs‐OH in the composites was 1 wt%; in excess of this amount, the compatibility between the organic and inorganic phases was compromised. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Poly(trimethylene terephthalate)‐poly(ethylene oxide terephthalate) block copolymer (PTG)/multiwalled carbon nanotubes (MWCNTs) composites were prepared via in situ polymerization. To improve the dispersion of MWCNTs in the PTG matrix, the poly(ethylene glycol)‐grafted multiwalled carbon nanotubes (MWCNT‐PEG) were produced by the “graft to” method. The transmission electron microscopy observation demonstrated that a homogeneous dispersion of MWCNT‐PEG was obtained. As a consequence, the percolation threshold for the rheology was around 0.5 wt% and the conductivity was ~1 wt%, respectively. Differential scanning calorimetry and polarized optical microscopy results confirmed that MWCNT‐PEG can act as an effective heterogeneous nucleating agent. Interestingly, the effects of MWCNT‐PEG on crystallization and melting of the poly(ethylene oxide terephthalate) blocks were more pronounced than on those of the PTT blocks. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号