首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic‐based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous‐silica‐based nanocarriers with stimuli‐responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site‐specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli‐responsive mesoporous‐silica‐based systems are described.  相似文献   

2.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

3.
Innovative nanoparticles hold promising potential for disease therapy as drug delivery systems. For brain‐disease therapy, a drug delivery system that can sustainably control drug‐release and monitor fluorescence of the drug cargos is highly desirable. In this study, a light‐traceable and intracellular microenvironment‐responsive drug delivery system was developed based on the combination of glutathione‐responsive autoflurescent nanogel, dendrimer‐like mesoporous silica nanoparticles, and gold nanoparticles. The resulting hybrid nanoparticles represent a new class of delivery system that can efficiently load, transport, and control multistage‐release of sulfydryl‐containing drugs into neurons, with light‐traceable monitoring for future brain‐disease therapy.  相似文献   

4.
We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH‐responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi‐drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH‐response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH‐values, and enhances their release at higher pH‐values, which can be further used for colon cancer prevention and treatment. Overall, the pH‐responsive polymer/PSi‐based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy.  相似文献   

5.
6.
To elevate the efficacy and to attenuate the adverse effects remain a tough challenge in exploring anticancer drug delivery systems. A nanocarrier characteristic of acid induced charge reversal and acid/redox/magnetic combinational stimuli‐responsiveness is designed. This system exhibits weaker repulsion between the carrier and the cancer cell membrane, resulting in enhanced uptake. After nanocarriers enter the cell, the system exhibits negative‐to‐positive charge reversal in response to the low intracellular pH value. Moreover, after the uptake, the carrier will be further dissociated by glutathione in cytoplasm via the reduction of the disulfide bond, leading to the rapid release of the encapsulated DOX into the nuclei. In vitro release study expresses the sequent stimulus release profile. The antitumor activity tested in CT26 tumor‐bearing mice reveals efficient therapeutic efficacy and as low adverse effect as PBS. H&E staining and immunohistochemical analysis of tumor tissues as well as pathological test of tissue sections of vital organs confirm the high antitumor activity and low tissue toxicity. Thus, the belief that this system has a good prospect in the field of cancer clinical chemotherapy.
  相似文献   

7.
传统药用高分子材料如纤维素醚类衍生物、丙烯酸树脂类及聚乙烯吡咯烷酮类等具有良好的膨胀性、溶蚀性和渗透性等。当其受到外界信号刺激时,高分子材料的结构和性质随之发生变化,从而控制药物的脉冲释放。概述了传统药用高分子材料在脉冲式药系统中的应用研究,探讨了新型高分子材料的发展方向。  相似文献   

8.
9.
10.
11.
A novel type of nanovehicle (NV) based on stimuli‐responsive supramolecular peptide‐amphiphiles (SPAs, dendritic poly (L‐lysine) non‐covalently linked poly (L‐leucine)) is developed for intracellular drug delivery. To determine the pH‐dependent mechanism, the supramolecular peptide‐amphiphile system (SPAS) is investigated at different pH conditions using a variety of physical and chemical approaches. The pH‐triggered disassembly of SPAS can be attributed to the disappearance of non‐covalent interactions within SPAs around the isoelectric point of poly (L‐leucine). SPAS is found to encapsulate guest molecules at pH 7.4 but release them at pH 6.2. In this way, SPAS is able to act as a smart NV to deliver its target to tumor cells using intracellular pH as a trigger. The DOX‐loaded NVs are approximately 150 nm in size. In vitro release profiles and confocal laser scanning microscopy (CLSM) images of HepG2 cells confirm that lower pH conditions can trigger the disassembly of NVs and so achieve pH‐dependent intracellular DOX delivery. In vitro cytotoxicity of the DOX‐loaded NVs to HepG2 cells demonstrate that the smart NVs enhance the efficacy of hydrophobic DOX. Fluorescence‐activated cell sorting (FACS) and CLSM results show that the NVs can enhance the endocytosis of DOX into HepG2 cells considerably and deliver DOX to the nuclei.  相似文献   

12.
A novel pH‐ and redox‐ dual‐responsive tumor‐triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox‐responsive, as a gatekeeper as well as a tumor‐targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic‐imine bond, which is pH‐sensitive, are then connected via “click” chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic‐imine bond under acidic conditions. After deshielding of the MPEG segment, the drug‐loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy.  相似文献   

13.
14.
Multidrug resistance (MDR), is the key reason accounting for the failure of cancer chemotherapy, remains a dramatic challenge for cancer therapy. In this study, the one‐step microfluidic fabrication of a rigid pH‐sensitive micellar nanocomplex (RPN) with tunable rigidity and acid‐switchable surface charge for overcoming MDR by enhancing cellular uptake and lysosome escape is demonstrated. The RPN is composed of a poly(lactic‐co‐glycolic acid) (PLGA) core and a pH‐sensitive copolymer shell, which is of neutral surface charge during blood circulation. Upon internalization of RPN by cancer cells, the pH‐responsive shell dissociates inside the acidic lysosomes, while the rigid and positively charged PLGA core improves the lysosomal escape. The cellular uptake and nuclear uptake of doxorubicin (Dox) from Dox‐loaded RPN are 1.6 and 2.4 times higher than that from Dox‐loaded pH‐sensitive micelles (PM) using a Dox‐resistant cancer model (MCF‐7/ADR, re‐designated NCI/ADR‐RES) in vitro. Dox‐loaded RPN significantly enhances the therapeutic efficacy (92% inhibition of tumor growth) against MCF‐7/ADR xenograft tumor in mice, while Dox‐loaded PM only inhibits the tumor growth by 36%. RPN avoids the use of complicated synthesis procedure of nanoparticle and the necessary to integrate multiple components, which can facilitate the clinical translation of this novel nanostructure.  相似文献   

15.
16.
Metal–organic frameworks (MOFs)—an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers—have attracted increasing attention in recent years. The superior properties of MOFs, such as well‐defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, make them promising candidates as drug delivery hosts. Furthermore, scientists have made remarkable achievements in the field of nanomedical applications of MOFs, owing to their facile synthesis on the nanoscale and alternative functionalization via inclusion and surface chemistry. A brief introduction to the applications of MOFs in controlled drug/cargo delivery and cancer therapy that have been reported in recent years is provided here.  相似文献   

17.
18.
通过介入导管将药物和基因载运到血管内病灶部位,并在血管组织中长期释放。以生物可降解聚合物PLGA为基材,采用超声乳化/溶剂挥发法分别制备包载药物和基因的纳米粒子,对纳米粒子进行了表面修饰提高血管吸收性;用载反义MCP-1基因的纳米粒子转染平滑肌细胞,对平滑肌细胞基因组DNA进行PCR扩增;用兔髂总动脉和颈总动脉血管损伤模型进行灌注实验。体外释放实验表明均具有缓慢释放作用,凝胶电泳实验证明基因的结构未遭破坏。说明纳米粒子是非常理想的血管内导向定位药物和基因控释的载体。  相似文献   

19.
Tumor‐responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein‐based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross‐linking and surface polyethylene glycol coupling, can be used as versatile tumor‐responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6‐encapsulated nanospheres (Ce6‐Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6‐Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6‐Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6‐Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6‐Ns and the biocompatibility of Ce6‐Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles.  相似文献   

20.
Biomimetic camouflage, i.e., using natural cell membranes for drug delivery, has demonstrated advantages over synthetic materials in both pharmacokinetics and biocompatibility, and so represents a promising solution for the development of safe nanomedicine. However, only limited efforts have been dedicated to engineering such camouflage to endow it with optimized or additional properties, in particular properties critical to a “smart” drug delivery system, such as stimuli‐responsive drug release. A pH‐responsive biomimetic “platesome” for specific drug delivery to tumors and tumor‐triggered drug release is described. This platesome nanovehicle is constructed by merging platelet membranes with functionalized synthetic liposomes and exhibits enhanced tumor affinity, due to its platelet membrane–based camouflage, and selectively releases its cargo in response to the acidic microenvironment of lysosomal compartments. In mouse cancer models, it shows significantly better antitumor efficacy than nanoformulations based on a platesome without pH responsiveness or those based on traditional pH‐sensitive liposomes. A convenient way to incorporate stimuli‐responsive features into biomimetic nanoparticles is described, demonstrating the potential of engineered cell membranes as biomimetic camouflages for a new generation of biocompatible and efficient nanocarriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号